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Abstract- Repetitive learning control was examined for active 

vibration control of rotor. A novel modification of a gradient-based 
repetitive learning control algorithm was developed. The stability of 
the algorithm was studied and the algorithm was tested on a rotor 
test rig. The experiments showed that repetitive learning control 
attenuated efficiently rotor vibrations excited by rotor unbalances. In 
addition to experimental work, the paper presents convergence and 
stability properties of the proposed repetitive learning control 
approach. 

 
Index Terms—active vibration control, repetitive control, learning 

control, rotor, rotating machine 
 

1. INTRODUCTION 
 
Active vibration control is making its debut in machine 

industry. Traditionally, typical applications have been 
found in aerospace and precision engineering. Active 
control of rotor and rotor-induced vibrations is becoming 
more common together with tightening requirements on 
vibrations and noise emitted. Different types of adaptive 
feedforward algorithms have been studied to attenuate 
rotation induced vibrations [6, 5]. Our aim is to study what 
may be achieved with repetitive learning control in the 
context of rotor radial vibration control. The current paper 
reports the results achieved with repetitive learning control. 
A more covering comparative study of different control 
approaches can be found in [16]. The novelty of this paper 
is in the experimental application of repetitive learning 
control on variable-speed rotating machines. Repetitive 
control has been applied on rotating machines before [14, 
18], but variable speed machines and digital control 
systems pose additional challenges as it is shown below. 
This paper suggests an interpolation method and DC 
removal method to compensate disturbances with variable 
period. Also, this paper shows a method to study stability 
of repetitive controller on complex plane and to relate it to 
windowing techniques in data acquisition. The method is 
originally published in [1]. 

 
1.1 Repetitive Learning Control for Rotor Vibrations 

 
The internal model principle states that a system has to 

contain a model of a signal in order to track or compensate 
the signal perfectly [2]. This idea has been utilized in the 
compensation of rotation harmonics in rotor vibration 
control. In feedforward systems, the model of the signal is 
in the form of a reference signal. In the repetitive and 

iterative learning control systems, the signal is learnt by 
means of a delay line with positive feedback. The original 
idea of repetitive control was presented by Inoue et al. for 
high accuracy control of a magnet power supply [11]. The 
aim is to develop a controller that tracks a periodic control 
signal. The use of positive feedback and a delay line makes 
it possible to track the control signal perfectly. This 
property makes repetitive control an attractive solution for 
compensation of periodic disturbance signals. Figure 1 
shows a basic disturbance compensation scheme with a 
repetitive controller (the disturbance is d(s), where s is the 
Laplace variable). The magnitude of the output error, e(s), 
to be minimized, is fed back. Also, the old control outputs 
are delayed by time T and fed back, with a positive loop 
gain. This leads to a control law where controller outputs 
are updated (taught) by the realized output errors 
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Figure 1. The basic scheme of the repetitive control. 
 
Figure 2 shows a simulation example carried out on the 

system in Figure 1 with G(s) = 1. The delay time T is set 
such that it matches the frequency components in the 
disturbance signal (1/T and 2/T). The control signal is 
learnt during about eight periods in such away that the 
output error e(t) is driven to zero (t is the time variable). 
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Figure 2. Simulation example of the basic repetitive controller. The 
signals are plotted against the fundamental period of the disturbance (1/T). 
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Potential solutions for repetitive learning control have 
been found in tracking or compensation problems [13, 8], 
in robotics [3], in computer disk drives [18, 12, 15], in 
peristaltic pumps [8], etc. A periodic disturbance, often due 
to rotary movement, can be found as the common 
denominator behind the applications. 

As explained above, repetitive controllers were 
developed to track or to compensate periodic signals. The 
idea behind the repetitive control method is to continuously 
refine the control output by using old control outputs and 
error data. The control law in continuous time, as its 
simplest, is 

 )()()( tKeTtutu −−=  (1) 

where u(t) are the control outputs, e(t) is the error quantity 
and T is the delay time, and K is the feedback gain. The 
delay time is to be set equal to the period of the signal to be 
tracked or compensated. Positive feedback of the delayed 
signal leads to high, ideally infinite, feedback gain at 
frequencies matching the inverse of the delay time 

 
T
nf =  (2) 

where n is a non-negative integer corresponding to the 
harmonic number. A sufficient condition for stability of the 
repetitive controller is that the system loop gain must be 
positive real, because of the high feedback loop gain. In 
Figure 3, the loop gain is plotted against the harmonic 
number (n). The requirement of positive realness can be 
understood by considering the denominator of the closed-
loop system with repetitive controller 
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where KG(s) represents the loop gain transfer function of 
the system. The real part of the KG(s) must be positive in 
order to maintain the stability (to prevent the denominator 
from being zero). In other words, the phase of KG(s) must 
be within ±90o. These requirements guarantee stability, 
because positive real systems can tolerate infinite feedback 
gain. The result can also be understood by considering the 
classical Nyquist stability criterion that states that the loop 
gain must not encircle the point (–1, i 0) in the complex 
plane. If KG(iω) has a positive real part, it cannot encircle 
the point, regardless of the feedback gain. Note again that 
the requirement stated is a sufficient condition for stability 
and less conservative requirements exist. The requirement 
of positive realness is relatively stringent for mechanical 
systems, which often have resonances and anti-resonances, 
where phase changes often exceed 90o. 

The basic repetitive controller was presented above 
using the continuous time formulation. Moving to the 
discrete time domain may ruin the controller stability, 
since sampled systems are rarely positive real. It has been 
shown that a discrete system can be a positive real system 
only if the system’s output is directly influenced by the 

inputs, i.e., the direct term in the state-space representation 
is not equal to zero [9]. As known, the direct term is 
frequently equal to zero in practical systems with finite 
sampling frequency. This can be understood by 
considering the signal delay due to sampling. The phase 
lag of a sampled and reconstructed signal with respect to 
the actual continuous-time signal grows as the Nyquist 
frequency is approached. 
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Figure 3. The loop gain of a repetitive controller. 

 
Because several practical control systems are 

implemented digitally and operate in discrete time, the 
repetitive control theory has been developed in the discrete 
time domain, respectively. In order to tune stability and 
convergence characteristics, the basic repetitive control 
law in Eq. (1) has been modified to contain pre-filters for 
the old-control (learning) component and for the control 
error component 

 )()()()()( neqKnuqqQnu N += −  (4) 

where Q(q) is a filter or a constant number and K(q) is the 
feedback gain, also a filter or a constant number, and q is 
the forward shift operator with q-N representing a backward 
shift of N samples. Filter Q(q), which has a gain of less or 
equal to unity, has been used for restricting the control 
actions to a desired frequency band. It will later be referred 
to as the Q filter. The filter K(q) has been used to 
appropriately modify the loop gain K(q)G(q) [18]. At least, 
it means having the loop gain positive real at the 
frequencies where abs(Q) ≈ 1. As will be shown, the delay 
line gives more freedom in the design of K(q); it actually 
provides an opportunity for a non-causal implementation 
that makes a zero-phase-lag filter possible.  
 

2. MATERIALS AND METHODS 
 
2.1 Test Rig for Rotor Vibration Control 

 
The experiments were carried out on a laboratory test 

rig. The test environment had a 560-mm long slim shaft 
with three disks attached (Figures 4 and 5). The disks were 
fixed to the shaft to make it resemble a real-life machine 
and to tailor the dynamics of the shaft. The disk locations 
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were chosen in such a way that the rotor exhibited a speed-
dependent behavior, although the speed-dependence was 
later found rather weak. The total weight of the rotor 
including the shaft and three disks was 2.7 kg. The rotor 
was supported by two journal bearings, 360 mm apart. An 
electro-magnetic actuator was located at the non-drive end 
of the rotor whereas the vibrations were to be attenuated 
inside the bearing span of the rotor. Radial displacement 
sensors were situated at two locations along the shaft: at 
the midpoint and at the end of the rotor (S1 and S2 in 
Figure 4). The electromagnetic actuator was located at the 
non-drive end of the rotor; the armature corresponded to 
Disk 3 in Figure 4. The electromagnetic actuator was 
controlled by an integrated digital signal processor and 
power amplifier unit. [16]. 
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Figure 4. The rotor layout: the displacement sensors at “S1” and “S2” the 
actuator at “A”. The dimensions are in millimeters. 
 

 
Figure 5. The driving motor (left), the rotor with the disks, and the 
actuator (right). 

 
Three lowest natural vibration modes of the rotor shaft 

were identified experimentally (Figure 6). The 
corresponding natural frequencies were 46 Hz, 71 Hz, and 
123 Hz in the horizontal plane and 46 Hz, 78 Hz, and 
137 Hz in the vertical plane. The differences were caused 
by asymmetric rotor supports. To estimate frequency 
response functions, the rotor was excited with band-limited 
white noise (0…400 Hz) by the actuator. Responses were 
recorded at the sensor locations at different speeds of 
rotation. A simple Proportional-Derivative (PD) control 
was utilized during the identification of the responses. The 
proportional control produced an equivalent stiffness of 
7 N/mm. The derivative part produced an equivalent 
damping of 43 Ns/m. In identification, the order of the 
dynamic model to be fitted was chosen as m = 5 
(numerator) and n = 6 (denominator). Figure 7 and 8 show 
the least squares fits with the disturbance compensation 
method used in [16] in comparison with the direct 
Frequency Response Function (FRF) measurement without 
any disturbance compensation. The FRFs are shown from 

the force commands to the rotor displacement. The 
identification results showed that the first resonance 
dominated at about 50 Hz. The next two modes at about 
70–80 Hz and 120–140 Hz were weakly observable at the 
midpoint. This was due to the high damping and low 
displacement at the midpoint of those modes. The phase 
curves, however, indicate the existence of the modes. 
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Figure 6. The three lowest mode shapes of the rotor.  
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Figure 7. The FRF from the actuation point to the rotor midpoint when 
running at 40 rps. 
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Figure 8. The frequency response function from the actuation point to the 
rotor midpoint when running at 70 rps. 
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In addition to repetitive learning control PD controllers 

together with an averaging low-pass filter were used in the 
feedback system. The transfer function from the 
displacement at the rotor endpoint to the force at the 
actuator is  
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where KD is the derivative gain, KP is the proportional gain, 
TS is the sample time, and q-1 is unit delay with length of TS. 
The PD controller was mainly derivative in order to 
increase the damping of the system. The proportional term 
was minimal, because a load-carrying effect was to be 
avoided. The actuator was to have a minimal effect on the 
stiffness of the rotor. However, a light proportional control 
was utilized to generate a light centering force at a 
relatively flexible overhanging rotor end [16].   

 
2.2 Gradient-Based Repetitive Learning Controller 

 
The starting point for the development of a repetitive 

controller with adaptive delay time is the gradient-based 
method whose feedback path consisted of a truncated 
Finite Impulse Response (FIR) filter that had inverse phase 
behavior with respect to the actual plant. The behavior is 
obtained by using the time-inversed impulse response of 
the plant as the FIR filter [10]. This particular approach is 
selected because it is considered a computationally 
inexpensive method, possible to implement in the control 
unit. Also, its stability is guaranteed by sufficient model 
accuracy; sufficient modeling accuracy again meaning a 
phase error of ±90° [10]. Another way to examine the 
stability is to study destabilizing effects due to the FIR 
truncation, similar to the leakage phenomena in data 
acquisition [1]. Chen & Longman showed the existence of 
these effects and applied certain windowing techniques for 
repetitive control to avoid them [1]. Both approaches lead 
to a somewhat similar result requiring the modeling 
accuracy to be sufficient. 

The idea is to use a pre-filter K(q) that makes the loop 
gain positive real. In the current work, this is realized with 
a non-causal filter derived from the plant model.  

 )()( qGqK mα=  (6) 

where α is a real-valued convergence coefficient and Gm(q) 
is the non-causal FIR model of the plant G(q) where 
variable q is substituted by q-1. The plant is approximated 
by a time-reversed truncated FIR model 
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M
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− ,...)( 01
1

1  (7) 

where [aM ... a0] are the FIR coefficients and M is the order 
of the FIR filter. The causality of the control law is 
guaranteed by truncating the FIR filter (restricting the 
order M) and by implementing it together with the delay 
line. Hence, the FIR length must be lower or equal to the 

delay filter length in order to ensure the causality of the 
algorithm. As many FIR coefficients are chosen for the 
approximation as the delay filter length allows. Then, the 
FIR approximation is formed by flipping the truncated 
impulse response in the inverse order. The resulting filter 
has amplitude characteristics similar to the original plant 
(within the accuracy of the approximation). The phase 
characteristics of the FIR are inversed with respect to the 
plant. A phase lag in the plant corresponds to a phase lead 
in the FIR filter, and vice versa. With the truncated FIR, 
the control law becomes [10, 16, 17] 

 ( ))()()()()( neqGnuqQqnu m
N α+= −  (8) 

Similarly to the FIR approximation, the Q filter can be 
non-causal alone without the time delay. A symmetric 
filter can be applied 
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where [cP ... c0] are the FIR coefficients and P is the order 
of the filter. The filter works usually as a low-pass or as a 
band-pass filter, but with zero phase lag. Although the pre-
filters Q(q) and K(q) (or Gm(q)) may contain non-causal 
components, the control law itself remains causal if the 
orders of the filters are lower than the order of the time 
delay. The shown realization of the Q filter makes it a filter 
without phase lag. In other words, the frequency response 
of the filter is always real-valued 
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where ω' is a normalized angular frequency in [0, 2π]. 
 

2.3 Convergence to Zero Error 
 
Algebraic examination shows how the repetitive control 

algorithm rejects a periodic disturbance. The result can be 
expected intuitively because the high (infinite) gain at the 
frequencies determined by the time delay provides a good 
disturbance rejection at those frequencies. However, the 
analysis below provides an algebraic insight in repetitive 
and iterative learning control methods. 

Consider a polynomial D(q) that works as an annihilator 
[13] (or an internal model by [2]) for a periodic disturbance 
signal d(n) 
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if abs(Q) = 1 and the period of the disturbance is N 
samples. The output of the plant y(n) and the output of the 
repetitive controller u(n) can be expressed as 
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Hence, the plant output can be expressed by 

 )(
)(
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Then, consider the control error 
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Multiplication by the stable polynomial D(q) gives 

 )()()()()()()( neqGqGqndqDneqD m
Nα−−=  (15) 

As noted above, the term D(q)d(n) = 0 if abs(Q) = 1. 
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This shows that the disturbance signal is annihilated and 
the control error converges to zero with given assumptions. 

    
2.4 Stability of Repetitive Learning Control  
 

The pulse transfer function from the disturbance to the 
control signal of the gradient-based repetitive controller 
presented above becomes 
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By using the small gain theorem (see e.g. [4]), the stability 
boundary for the system is 
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If we assume Q(q) = 1 for all the frequencies, and if the 
plant model perfectly describes the system (i.e. Gm(q) = 
G(q)), we have the stability condition for the convergence 
coefficient, or the learning gain 
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This result is derived by [10]. The result can be 
considered conservative, since the requirement concerns all 
the frequencies. 

The truncation of the filter raises questions about the 
accuracy of the approximation and possible leakage effects 
due to the truncation. In practice, Gm(q) ≠ G(q), because of 
the truncated FIR approximation. According to the 
example in [1], the plant may be presented by two 
components, the actual model part and the residual part. 
Let the plant frequency response be  
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where )( i ST
r eG ω  is the residual part not included in the 

plant model, of order M. The FIR coefficients of the 
frequency response are represented by hi. The model and 
the residual parts describe the system perfectly. In other 
words 
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)( 'ωi
m eG and )( 'ωi

r eG  are the complex conjugates of the 
plant model and the residual term. Stability analysis is 
based on the small gain theorem to limit the loop gain 
below unity and to obtain a sufficient condition for 
stability by this way [1]. The terms of Eq. (21) may be 
examined graphically on the complex plane where 

2Gα− represents the desired coefficient update and 

GGmα− represents the realized coefficient update. If the 
realized coefficient update does not stay within the unit 
circle, the algorithm is under a risk of instability. Figure 9 
shows two imaginary scenarios for the significance of the 
residual term: a) the residual term does not have an effect 
and the system is stable, and b) the closed-loop system can 
be unstable without the residual term. 
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Figure 9. The illustration of the ideal, the plant model, and the residual 
gain vectors within the stability limits represented by the unit circle. 
Situation a) is acceptable. Situation b) where the residual vector contains 
stabilizing components should be avoided. 

 
If we use the plant and the residual to describe the 

model, we can estimate their contribution to the stability. 
The substitution 

 )()()( ''' ωωω i
r

ii
m eGeGeG −=  (22) 

modifies the stability condition into 
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Examination of the complex vectors shows that the plant 
contains all the frequency components whereas the residual 
vector contains only the high frequency components (the 
minimum frequency being determined by ωTSM). The 
residual vector spins rapidly with respect to the plant 
vector in the complex plane, because it contains those high 
frequency components. To keep on the safe side, we may 
require that the plant vector is never closer to the unit 
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circle than the maximum length of the residual vector. 
Requiring 

 [ ]πωαα ωωωω 20',)()(1)()( ''2'' ∈∀−<− ii
r

ii eGeGeGeQ  (24) 

makes the stability limits conservative. In [1], norm 
)()( '' ωω ii

r eGeG was used in the equation above. This 

action was done in order to keep safe side in the stability 
analysis. As explained before, the residual term with high-
frequency components spins rapidly in the complex plane.  

The practical difficulty is that the true transfer function 
of the plant is usually unknown. Thus, the exact residual 
term is also unknown. The situation is shown graphically 
in Figure 10. The condition indicates a fundamental 
problem: if 1)( ' =ωieQ  and )()( '' ωω ii

r eGeG > , a small 

positive stabilizing α does not exist. On the other hand, 
this means that the loop gain is not positive real. 
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Figure 10. The graphical interpretation of the criteria in Eq. (24). 

 
In [1], different windowing techniques were compared 

to be used together with truncation; the conclusion was to 
use exponential, and accelerated exponential, windows. 
Effectively this means using a frequency-dependent 
complex convergence coefficient (α) that corrects the loop 
gain in such a way that its positive realness is maintained. 
The criterion for evaluating the windows is the stability of 
the algorithm. Again, the conclusion is that stability is 
maintained if the truncated FIR model is capable of 
describing the phase within ±90° corresponding to the 
result derived in [10].  

As the discussion shows, stability problems may occur 
at high frequencies if the residual term dominates. Besides 
windowing, another option is to use the Q filter to restrict 
the control action at high frequencies. Several windowing 
techniques have been proposed for FRF estimation in 
dynamic systems. Those techniques are aimed at 
preventing the leakage that is the generation of high-
frequency components, from corrupting the result. Similar 
problems can occur with a truncated FIR repetitive 
controller [10]. 

 
2.5 Novel Repetitive Controller with Adaptive Delay 
Time 

The update scheme for the truncated-FIR repetitive 
controller is  

 ))()()()(()( neqGnuqQqnu m
N αγ −= −  (25) 

where Gm(q) is the model of the system represented as a 
truncated FIR approximation of the system G(q) and γ is a 
scalar leakage coefficient, less or equal to unity. The 
system model alone is a non-causal filter. However, the 
algorithm is causal, because the order of the FIR model 
does not exceed the delay length N. 

The delay time has to be adjusted according to the speed 
of rotation. For variable-speed rotating machines, the delay 
time must thus be adjustable. Another option is to use the 
rotation phase-based delay, as in [3]. The solution makes it 
possible to use a constant delay, typically one revolution, 
i.e. 2 π rad. However, this experimental work exploited 
time-based repetitive algorithms [16, 17]. The choice was 
justified by two technical facts: 1) The measurement of the 
phase signals was not considered sufficiently reliable and 
accurate compared with the signal processor’s capability of 
maintaining constant sampling intervals, and 2) The 
technical restrictions made it difficult to trigger the signal 
processing based on the rotor revolution pulses. 

In the algorithm presented, the filter length is selected 
on-line according to the rotation speed estimation. The 
fundamental period of the disturbance is then determined 
by the rotation speed. The integer number of samples 
required is always rounded downwards to the nearest 
integer below by the algorithm 
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where frot is the measured speed of rotation. The fact 
that the required delay does not exactly meet the integer 
number of samples is taken into account by introducing a 
relative length error variable. The relative length error le 
between the realizable delay time and the required delay 
time is 
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The length error is then used for the interpolation of the 
new control output by using two successive old outputs 
u(n–N) and u(n–N–1). The control law then becomes 

 ( ))()()()1()( 1 neqGnuqllqnu mee
N α−+−= −−  (28) 

and the pulse transfer function from the disturbance to the 
control output equals 
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The interpolation is implemented in order have a more 
accurate frequency adjustment for the repetitive controller. 
Figure 11 shows the gain of the repetitive controller with 
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the interpolation feature in the vicinity of the first 
harmonic frequency. With the chosen parameters 
(TS = 0.0001 s, N = [20, 21], le = [0, 0.25, 0.5, 0.75]), the 
peak in the gain may be adjusted from 48.8 Hz to 51.1 Hz.  
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Figure 11. The gain of repetitive control loop as a function of frequency 
for different delay times (the filter order and the length error). 

 
The interpolation, however, modifies the phase of the 

system and has a certain destabilizing effect. This feature 
diverges from the original idea of having a zero-phase 
system to ensure stability with high feedback gain [18, 9]. 
The issue is discussed below, after the completion of the 
algorithm used in the experimental work. 

As explained above, the Q filter is used for limiting the 
frequency band of control actions. The type of Q filter used 
is a low-pass filter. A band-pass filter would have been 
required in order to avoid developing a DC component in 
control. The repetitive control method, being integrative, 
provides high feedback gain at zero frequency. It was, 
however, impossible to realize a sufficiently long and 
accurate band-pass filter due to technical restrictions of the 
control unit. Making an FIR-based band-pass-type Q filter 
that accurately has unity amplitude in the frequency band 
of interest requires a relatively high order filter. On the 
other hand, the maximum order of the filter is limited due 
to computational restrictions. Note that the Q filter alone 
does not require excessive computational power, but the 
overall algorithm using FIR representations for systems 
models, feedback control, and the DC removal feature 
presented below does. The computational cost of the 
algorithm increases rather rapidly.  

This problem is avoided by implementing a separate 
DC removal system. The DC removal function is realized 
with a feedback of the integrated control signal. The 
transfer function of the feedback integrator alone equals 
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where ωLP is the integrator gain, used for the adjustment of 
the high-pass corner frequency. Finally, the control law, 

shown in Figure 12, with adaptive delay time, interpolation, 
and the DC-removal function is expressed as 
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Figure 12. The repetitive control system applied to the test environment. 

 
Similarly to the interpolation function, the DC removal 

function modifies the phase of the system and needs 
attention in terms of stability. The parameters γ and α 
determine the convergence and the stability properties of 
the algorithm. The pulse transfer function from the error 
signal to control output is 
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The system is time invariant for a constant rotation 
frequency, but N and le are updated according to the speed 
of rotation. Without the DC-removal integrator, γQ = 1 and 
le = 0, the transfer function becomes 
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Furthermore, if we assume that the model perfectly 
describes the system, we arrive at the stability condition 
stated earlier. If there are modeling errors, αGm(q)G(q) 
becomes complex valued.  

The next effort is to study the stability of the algorithm 
presented in Eq. (31) and shown in Figure 12. 
Multiplication by (1–q-1) gives for the characteristic 
polynomial 

 ( )( )
SLP

eem
N

T
qllqQqGqGqqqqP

αω
γα ++−−−+−= −−−− 111 )1()()()()1(1)(  (34) 

The polynomial does not have a closed form solution 
for the roots. The interpolation feature induces a 
destabilizing component in the algorithms regardless the 
modeling error. A numerical examination shows that 
increasing the length error le pushes the high-frequency 
poles of Eq. (34) outside the unit circle (Figure 13). 
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Achieving stability requires the use of the Q filter for 
relative frequencies 2/' πω > . The frequency limit is 
approximate and comes from a heuristic examination of the 
algorithm. The real part of term ( )'i'i )1()( ωωγ −+− elleQ ee  
changes its sign 2/' πω = for le = l. With the use of a low-
pass type Q filter the poles remain inside the unit circle. 
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Figure 13. An example of the pole map of Eq. (34). 
 

3. EXPERIMENTAL RESULTS 
 
The control algorithm presented in Eq. (31) was 

implemented on the rotor kit [16, 17]. As described above, 
the length of the delay time and the length of the FIR plant-
model filters were adjusted according to the rotation speed 
estimation. The computational requirements of the 
algorithm and the performance of hardware caused 
restrictions on the operating range. A certain number of 
operations were available per signal processor cycle. The 
algorithm parameters were chosen such that the algorithm 
was operable at least in the vicinity of the rotor resonance 
at 50 Hz. 

The maximum repetitive length selected was 35 (i.e. the 
FIR model order N = 34), and the minimum length was 15 
(N = 14). These figures correspond to rotation speeds from 
27 rps to 61 rps, for the implementation chosen. The FIR 
model filters were defined by impulse responses of the 
identified transfer functions in both planes separately. The 
FIR filters did not describe the system accurately, because 
relatively short filters were used. Figures 14 and 15 show 
comparisons of the longest and shortest FIR filters with the 
plant models. The implemented Q filter was a symmetric 
low-pass filter of length 15 (the current sample, 7 samples 
forwards and 7 samples backwards). Its –3 dB point lay at 
240 Hz to limit high-frequency control actions. Standard 
filter design tools were utilized to compute the filter 
coefficients. An important aspect was to design a filter 
without overshoot in its frequency response. Q filters with 
the same characteristics were implemented in both 
orthogonal planes (X and Y). 
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Figure 14. The implemented filters in the X plane. 
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Figure 15. The implemented filters in the Y plane. 

 
The feedback gain from the output error signal was 

influenced by the changing length of the plant-model filters. 
Figure 16 shows the effective repetitive feedback gains as 
a function of the repetitive filter length. The difference in 
the effective gains is caused by the different system models 
in the orthogonal directions. Figure 17 shows the open 
loop response for the complete repetitive control system 
from the control error e(n) to the controller output u(n). 
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Figure 16. The feedback gain of repetitive control as a function of the 
filter length (delay time). 
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Figure 17. The open-loop response from the error to the repetitive 
controller output (computed for α = 0.1, N = 25, and le = 0). 
 

Figure 18 shows the rotor midpoint responses with the 
repetitive controller at a speed of 30 rps (revolutions per 
second). The damping achieved was 12 dB at the first and 
second harmonics. The response of the repetitive controller 
was found to be strongly dependent on the rotation speed. 
The performance was at its best when the disturbance 
period allowed an integer ratio between the required delay 
length and the sampling interval. In other words, the 
required delay time, stated by the rotation speed, was then 
realizable with an integer number of unit delays and the 
length error variable was close to zero. Later, the situation 
is called a match between the disturbance and the delay 
length. In this respect, the response plot shown did not 
present a good match between the disturbance and the 
delay length. Figure 19 shows the responses in case when 
the disturbance matches the delay length (40.7 rps). 
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Figure 18. The rotor midpoint responses with repetitive control when 
running at 30 rps. 
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Figure 19. The rotor midpoint responses with feedback control, and with 
repetitive control when running at 40.7 rps. Speed matches with the filter 
length (24). α = 0.2. 
 

The algorithm was also run without Q filter for 
experimental purposes. The use of the filter with low-pass 
characteristics made the behavior of the algorithm 
substantially smoother. 

For variable-speed experiments, the repetitive controller 
was tested in a rotor run-down condition (Figure 20). The 
run-down was performed from a rotation speed of 63 rps 
down to 32 rps with ramp rate of 4000 rpm/min (1.1 rps/s). 
The vertical dashed lines in the figure indicate the speed 
where the delay filter length matched the disturbance 
period. The local minima in the response did not occur 
exactly at the dashed lines, because of the transient (run 
down) operating condition. The figure shows that the 
performance was strongly frequency-dependent at high-
speeds and the dependency weakened at lower speeds. 
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Figure 20. The radial displacement with repetitive control during a rotor 
run down (ramp rate equal to 4000 rpm/min). 

 
4. CONCLUSIONS 

 
The performance of the repetitive control method was at 

its best when the delay time matched the disturbance 
period. At those rotation speeds, the required repetitive 
length was realizable by an integer number of unit delays. 
Otherwise, the performance of repetitive control was 
poorer. The worsening of the performance can be 
understood by considering the integrative update law. A 
non-match situation causes a withdrawal of the integrator 
poles inwards from the unit circle. The situation is 
equivalent to a leaking integrator in the update law 
(parameter γ  < 1).  

The performance of the repetitive controller was 
relatively good for higher delay filter lengths (N > 22). For 
lower lengths (15 < N < 22), the performance became more 
dependent on the match between the disturbance period 
and the delay filter length. This was suspected to be caused 
by worsened plant model accuracy. The plant model 
accuracy was a function of the disturbance period, because 
the delay filter determined the maximum time-reversed 
FIR filter length. Using higher-order filters would have 
given smaller unit delays in the algorithm implementation. 

Interpolation was used in the repetitive control law in 
order to provide a better match with the excitation 
frequency. This feature improved the performance. On the 
other hand, the same feature introduced a destabilizing 
term at high frequencies. The final form of a good way to 
formulate the interpolation may still need to be studied. 

The tests presented did not do full justice to the 
repetitive control method’s ability to track any periodic 
disturbance matching the delay time (of course, limited by 
the Q filter characteristics). In certain rotating machines, 
the frequencies of the most significant excitations may not 
be predictable. For example, rolls working in a nip contact 
may develop different barring vibration frequencies. These 
kinds of applications are good candidates for repetitive 
control.  

The update law presented is not normalized to provide 
constant convergence over the operating range. 
Furthermore, the effective feedback gain changed as a 
function of the FIR model length. These features make the 
adaptation of the repetitive controller heavily dependent on 
the operating point. 

In the current application, a rotation-phase based 
implementation such as proposed in [3] would probably 
have provided a better performance, but was not realizable 
for technical reasons. Sahinkaya et al. [14] applied a 
similar control method to repetitive control in order to 
update Fourier coefficients in the control of harmonic 
vibrations in magnetic bearing systems. This kind of mixed 
approach was not considered.  

It is noteworthy that the repetitive controller worked at 
a relatively low system order and still provided a 
significant amount of attenuation. A straightforward way to 
improve the performance of the repetitive controller is to 
shorten the unit time delay used in the algorithm. In this 
way, the average mismatch between the disturbance period 
and the delay filter length is reduced. The plant model 
order, and thus the modeling accuracy, are also increased 
by the same modification. Hardware restrictions, however, 
did not allow testing the modification in the present test 
environment. 

The repetitive controller presented was also compared 
with other feedforward-type mass unbalance compensation 
algorithms [16]. Those feedforward algorithms indicated 
better performance with the test rig studied. 

Currently, research is directed towards active control of 
electrical machine vibrations using the machine’s internal 
forces. The repetitive control method may be particularly 
useful, if periodic electromechanical excitations occur at 
unpredictable frequencies. Then, the repetitive controller 
must be implemented with a higher order algorithm than 
that in the current work. Moreover, the test environment 
probably poses new challenges for active control in the 
form of non-linear force generation. Furthermore, the 
stability condition derived for basic repetitive control 
algorithm was conservative and no analytical stability 
condition was derived for repetitive control with 
interpolation and DC removal. An effort is to study more 
precise and less conservative stability boundaries for the 
algorithms developed and to include modeling errors in the 
analysis. 
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