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Abstract- This paper presents a simple method for determining 

analytical solutions to lag/lead cascade and general second order 
compensator design problems in the frequency domain. Only linear 
and quadratic equations are used in the proposed approach. Results 
obtained here can be used to eliminate conventional graphic-based 
trial-and-error method used in past and contemporary control 
textbooks, which are tedious and time-consuming, and rewrite them 
into simple and analytical non-trial-and-error steps. 

 
Index Terms—Lag/lead compensators, cascade compensation, 

trial-and-error, analytic solution. 
 

1. INTRODUCTION 
 
Although control system design has made tremendous 

progress over the last three decades, and advanced 
mathematic concepts, methods, and tools are used 
extensively in modern control theory, many industrial 
control systems are still designed by simple procedures in 
the frequency domain, especially the PID and lag/lead 
cascade compensation. Those classical approaches are very 
valuable due to their simplicity, particularly when no 
analytical plant models are unknown and only 
experimental data in frequency domain are available. Since 
the cascade compensation was first introduced, the 
determination of compensators has always been carried out 
by the conventional graphic-based trial-and-error design 
method, as one can see from all available past and 
contemporary textbooks in control [11-20]. Usually, an 
appropriate compensator can be obtained only after many 
trials and errors, usually a tedious and time-consuming 
process.  

From the control educational point of view, many 
consider the frequency domain design as “physics” of 
communication, control, and signal processing systems, 
especially when mathematics plays a more and more 
important role in teaching, research, and application of 
those fields in the modern age. This is quite natural and 
justified since frequency domain design methods expose 
students and engineers to variables and concepts that can 
be directly related to phenomena and quantities in the 
physical world, not just some heavy doses of matrices, 
equations, and their manipulations in mathematics. This is 
part of the reason why frequency domain design is still 
play a fundamental role in both engineering education and 
industrial applications. 

However, due to the nature of conventional trial-and-
error graphical techniques currently used by almost all 
available textbooks [11-20], learning and use of cascade 
compensation are still a time consuming process, and 
become more serious a problem in teaching and 
applications now since computers are used for everything 
and students are pressed for time in learning new and old 

subjects. Starting from Wakeland and Mitchell in 1970s [1-
4], Yeung, et al and Wang in 1990s [5-10], various efforts 
have been made to develop analytical or computer-aided 
design procedures for lag and lead compensation with 
limited and partial success.  

In this paper, we present a simple method for finding 
analytical solutions to lag/lead cascade and general second 
order compensation design problems. In this approach, 
using Euler formula for complex numbers, only linear 
equations are involved for solving unknown design 
parameters, no nonlinear or transcendental equations as in 
previous works. The proposed analytical solutions can be 
used as the basis to eliminate and rewrite traditional trial-
and-error procedures in control textbooks into analytical 
non-trial-and-error steps for determining cascade 
compensators in frequency domain. 

 
2. DESIGN SPECIFICATION FOR 

COMPENSATORS  
 
Fig. 1 shows the diagram for a feedforward 

compensation system, where Gp(s) and Gc(s) represent the 
given plant and the compensator to be designed, 
respectively. To facilitate the derivation, let us rewrite 
compensator as, 

)()( sGKsG ccc =                        (1) 
where 1)0( =cG . As usual, cK  is assumed to have been 
determined from the steady-state accuracy specification 
using the final value theorem for Laplace transforms [6, 
10-16]. Thus, )(sGc

 is the part of the compensator that 
needs to be determined. 

 Fig. 1: A Typical Feedforward Compensation System 
 

For a desired gain margin  GM  at a phase crossover 
frequency 1,ω   it follows that,  

GMjGjG
dBpc −=)()( 11 ωω , { } o

11 180)()( −=∠ ωω jGjG pc
 

where ( ) ( )1020log ,
dB

⋅ = ⋅   or in terms of 
cG  only, 

 
11 )( cjGc =ω , 11 )( pjGc =∠ ω         (2) 

where 
)(/)20/exp( 11 ωjGKGMc pc−=  ,  o

11 180)( −−∠= ωjGp p
  (3) 

Similarly, for a desired phase margin PM at a gain 
crossover frequency 2ω , we have, 
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0)()( 22 =
dBpc jGjG ωω ,  { } o

22 180)()( −=∠ PMjGjG pc ωω  

or in terms of cG  only, 

 
22 )( cjGc =ω ,  22 )( pjGc =∠ ω             (4) 

where 
)(/1 22 ωjGKc pc= , o

22 180)( −∠−= ωjGPMp p  

Using Euler’s Formula, we can rewrite Eqs. (2) and (4) 
into the following form, 

)sin(cos)( iii
jp

iic pjpcecjG i +==ω , 2,1=i    (5) 
Eq. (5) serves as the step stone to our analytical solution 
for designing lag/lead or general second order 
compensators. 

Note that in most of control textbooks [10-16], among 
margins GM, PM and crossover frequencies 1,ω  2ω  , only 
two or three of them are specified in compensator design. 
This is mainly due to two considerations. First, some of 
those parameters are not provided in actual design; second, 
and most importantly, the conventional trial-and-error 
graphical method does not allow all four parameters to be 
specified. In this paper, however, we assume all four are 
given and other cases can be considered easily based on 
our analytical solution, as indicated for a special class of 
three-parameter compensators in our previous work [8, 9]. 
 

3. SINGLE LAG OR LEAD COMPENSATORS 
 
A single phase lag or lead compensator is expressed as,  

 
s
sGc τ

ατ
+
+

=
1

1                       (6) 

where α < 1 or α > 1 indicates  a lag or lead compensator, 
respectively. Based on specification (2) or (4), we have, 

cjGc =)( ω   ,  pjGc =∠ )( ω          (7) 

where (c, p, cω ) is either (c1, p1, 1ω ) or (c2, p2, 2ω ).  
As indicated by Eq. (5), comparing the real and 

imaginary parts of Eq. (7), we can find easily that, 
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−
−
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pccα ,  
pc

pc
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1cos
ω

τ −
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Since 2/2/ ππ <<− p  , we have 0cos >p  , thus, 
21/1cos δ+=p  

where  ( )tan .pδ =  Therefore, in terms of  δ , 

2
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δ
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δω
δτ

c
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which are identical with the result given in [8], however, 
the derivation process in [8] is much more complicated and 
involves nonlinear and transcendental equations.  

From [8], the lead/lag compensation theorem for single 
phase lead or lag compensators can be stated as, 

a) A single phase lead compensator exists if and only if, 
c<+ 21 δ ,  0>δ , 

b) A single phase lag compensator exists if and only if, 
c/11 2 <+δ  , 0<δ  . 

 
4. THREE-PARAMETER LAG-LEAD 

COMPENSATORS 
 
A special class of three-parameter lag-lead compensators 

has been proposed and studied in [6, 9], they can be 
expressed as,  

s
s
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ssGc σ

βσ
τ
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+
+

⋅
+
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1
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where 0, 0, 0, 0.τ σ α β> > > >  Parameters α and β are 
related by 1.αβ =   

Substitute s  with jω   in Eq. (10), we have, 
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where, 
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Based on Eq. (5), we find that, 
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or in terms of δ , 
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which are identical with the result given in [9], again, the 
derivation process is much simpler here.  

From Γ  and Δ  , we can find ( ), , ,τ σ α β  easily, as 
one can see in [9] or from the next section. 
 

5. GENERAL LAG/LEAD COMPENSATORS 
 
In general, for a lag-lag, lag-lead, or lead-lead serial 

combination, we have, 
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where 0, 0, 0, 0.τ σ α β> > > >  
Substitute  s  with jω   in Eq. (12), we have, 
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ατβσ=Λ1 , βσατ +=Λ 2 , τσ=Λ3

, στ +=Λ 4
 ,  
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 Define, 
iii pcA cos=  ,  iii pcB sin= ,  2,1=i  

then, Eq. (5) leads to the following linear equations, 

),,,,,(
),,,,,(

221121

221121
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where 
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Once Λ is found from Eq. (14), ( ), , ,τ σ α β can calculated 
by solving two quadratic equations as,  

2/)4(),( 3
2
44 Λ−Λ±Λ=στ ;   (15) 

  2/)4(),( 1
2
22 Λ−Λ±Λ=βσατ      (16) 

where plus ‘+’ is for τ and α and minus ‘-’ is for σ and β. 
Note that actually this process will lead to four solutions, 
corresponding to 

( ), , ,τ σ α β  , 

( ), , , ,σ τ β α  

( ), , / , /τ σ βσ τ ατ σ  , and 

( ), , / , /σ τ ατ σ βσ τ  
respectively. Clearly, all four lead to the same final 
combination for lag/lead compensation. 
 

6. GENERAL SECOND-ORDER COMPENSATORS 
 

Consider a general second compensator in the form of,  

1
1)(
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2
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2
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where 0>iiba  , 2,1=i  . 
Substitute s with jω  in Eq. (17), from Eq. (5), we have, 
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where M and N is same as in the previous section, and  
[ ]Tbbaa 2121=χ  . 

Solving linear equations (18), we find the compensator 
immediately. Generally, compensator in (17) can not be 
factorized into a series of two lead or lag compensators. 

To consider the case that the original point is a pole for 
compensation, such as the case of PID compensation, we 
can assume a new form for )(sGc

 , 

)1(
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1
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 . 

In this case, the compensator can be determined from Eq. 
(18) by replacing Ai and Bi according to the following rule,  

iii BA ω−→ , iii AB ω→  . 
 
 

7. CONCLUSIONS 
 

In this paper, we present a set of analytic solutions to 
various compensator design problems in the classical 
control analysis and design in frequency domain. Based 
those analytic solutions, we can eliminate completely the 
need for the conventional graphic-based trial-and-error 

method used for such problems and practiced by students 
in classrooms and engineers in industry since the very 
begin of control as an independent disciplinary, as one can 
see from all the contemporary textbooks in control. Related 
textbook and educational issues will be addressed 
elsewhere. 
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