
Real-Time Dynamic Pose Estimation Systems in Space: Lessons 
Learned for System Design and Performance Evaluation  

 
Chad ENGLISH, Galina OKOUNEVA, Pierre SAINT-CYR, Aradhana CHOUDHURI, Tim LUU 

 
Abstract- Real-time pose estimation systems are fundamentally 

difficult to evaluate. Pose estimation performance is a function of the 
object geometry, environmental conditions, line of sight, sensor 
characteristics, algorithm characteristics, and computational 
platform. This paper presents lessons learned from Neptec’s two 
operational space systems for real-time dynamic pose estimation: the 
Space Vision System used by NASA for assembling the International 
Space Station, and the TriDAR Autonomous Rendezvous & Docking 
System used for spacecraft docking to the International Space Station 
and automated satellite servicing. Lessons learned are discussed in 
the context of design, trade-offs, challenges, and performance 
evaluation. This paper also discusses applying the lessons towards 
adapting these technologies for other applications. 

These lessons result in a proposed generalized framework for 
performance evaluation of pose estimation systems.  Such a task is 
not without challenges given the reliance of pose estimation on so 
many factors external to the system. Shape-based, targetless systems 
are particularly difficult to evaluate given the potential range of 
object shapes and views. However, predictable performance is critical 
for the success of space operations and NASA’s strict requirements 
have provided many valuable lessons towards performance 
predictability. Collaborative research is presented on metrics for 
quantifying shape with respect to pose estimation, providing a 
potential means for evaluating and predicting system performance 
with respect to shape properties. 

 
Index Terms—Pose estimation, ICP, lidar, performance 

evaluation, smart sensing, Principal Component Analysis 
 

1. INTRODUCTION 
 
Dynamic operations in space that involve imaging, 

modeling, or assembling generally require real-time 6 
degree-of-freedom (DOF) pose estimation to track the 
coordinate transformations between the sensor and objects 
or between multiple objects seen by the sensor. In machine 
vision, pose estimation techniques generally come in two 
flavours: those that use fiducial targets placed on the object 
to be tracked and those that use natural features of the 
object. Fiducial targets are more invasive but traditionally 
have provided more robust and accurate measurements 
than feature-based techniques. 

Over the last 20 years Neptec has developed and 
deployed a variety of machine vision systems for pose 
estimation. The Space Vision System (SVS) is a camera-
based system that uses fiducial targets for assembling the 

International Space Station (ISS) and has flown on over 20 
shuttle missions [26] (Figure 1, top). The TriDAR is a 
hybrid triangulation and pulsed time-of-flight (TOF) 
scanning laser-based object tracking system for 
autonomous rendezvous and docking (AR&D) 
([35],[36],[37]) (Figure 1, bottom). Spin-offs have applied 
these machine vision technologies to space, defence, and 
industrial applications, including dynamic 3D imaging, 3D 
mapping, inspection, automatic target recognition, 
metrology, helicopter landing, and rover navigation. 

This paper provides an overview of lessons learned in 
the development and evaluation of SVS and TriDAR real-
time 6 DOF pose estimation systems. The overview is not 
intended to place these systems in the context of the entire 
pose estimation field, nor as a review of the latest image 
processing techniques. It is intended to provide a historical 
case study of challenges and trade-offs in the development 
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Figure 1: Displays from target-based Space Vision System 
(top) and Shape-based TriDAR AR&D system (bottom). The 
TriDAR display is shown here using 3D models updated by 
real-time pose estimation from a spiral TriDAR scan (red 
points on space station). Section 2.3 describes scan patterns. 
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of operational real-time pose estimation systems in a 
difficult environment where performance is critical. This 
paper illustrates how solutions to complex performance 
evaluation were developed, and how these lessons might 
apply to more general pose estimation evaluation. 

The overview is divided into a series of steps. Section 2 
describes the history of pose estimation in space leading up 
to available and emerging state-of-the-art sensing 
technologies for this type of application. Section 3 
introduces the smart sensing approach used to achieve real-
time 3D pose estimation, including functional parameters 
that affect and complicate pose estimation performance 
evaluation. This section also introduces spin-off 
applications of real-time pose estimation with varying 
goals that further complicate evaluation. Section 4 presents 
challenges in defining and evaluating metrics for pose 
estimation including logistical problems. Section 5 
describes the verification and validation (V&V) process for 
SVS and TriDAR to demonstrate that the real-time pose 
estimation systems would work correctly in orbit, given the 
extreme environment and criticality of success. The V&V 
process divides the pose estimation into core components 
and tests them separately to make the evaluation tenable. 
Section 6 sets up a framework of shape-based metrics for 
separating intrinsic object characteristics from the system 
performance. These shape metrics are used to define an 
artifact optimized for pose estimation that has potential as 
an evaluation standard to compare pose estimation systems. 
Finally, Section 7 summarizes the work and provides 
conclusions for performance evaluation of pose estimation 
systems. 

 
2. REAL-TIME POSE ESTIMATION IN SPACE 

 
2.1 Evolution of Rendezvous & Docking Systems 

 
For high-end, robust, mid- to long-range applications 

based on real-time 6 DOF pose estimation there are 
essentially two options: target-based systems or shape-
based. Target-based systems use fiducial targets placed on 
the tracked object that are tracked using a camera, stereo 
vision, or laser tracking system. Shape-based systems 
generate 3D images of the tracked object and align it with 
a model of the object without adding targets to the object 

In its very basic form, pose estimation provides position 
(3 DOF) or position and orientation (6 DOF). Additional 
variables such as rates can be derived or measured. For 
space applications, the most basic and demanding use of 
pose estimation is autonomous rendezvous & docking 
(AR&D) of spacecraft.  These craft can move relatively 
unconstrained in all 6 DOF, potentially at high relative 
rates under harsh conditions of lighting and temperature 
variation, and with very high risk associated with failure. 

The state-of-the-art in AR&D technology has only 
matured in the last decade. The DARPA Orbital Express 
mission in 2007, sponsored by NASA and Boeing, saw the 
first successful AR&D system flown on-orbit [20]. This 
success was soon followed by the European Space 

Agency’s Jules Verne Automated Transfer Vehicle (ATV) 
successful mission of 2008 [16]. Prior to these successes, 
rendezvous, docking, and berthing systems required hands-
on control by astronauts. Such systems date back to the 
optical cross-hairs of the 1966 Gemini 8 test docking with 
the unmanned Agena Target Vehicle up to target-based 
Space Vision System (SVS) for assembling the ISS. The 
Russian Kurs system uses radio telemetry from an array of 
transmitting and receiving antennae on both the chase and 
target vehicle to determine range, bearing, and attitude.  
The Kurs docking system has been in operation since 1986 
aboard Soyuz TM-2, and its precursor, Igla, since 1967. 
Despite this long heritage and proven reliability, Kurs is 
largly precluded from being used in modern AR&D 
systems because of its prohibitive total mass of 85 kg for 
the chase vehicle and 80 kg for the target vehicle, and 
power consumption of 270 W for the chase vehicle and 
250 W for the target vehicle. It also relies on vacuum tubes 
with questionable lifetime. 

It is only recently that fully automated systems have 
been attempted. The NASA Demonstration of Autonomous 
Rendezvous Technology (DART) mission in April 2005 
was the first attempt to perform an automated rendezvous, 
but with no capture or docking, without a human in the 
loop [38].  The mission failed when DART prematurely 
placed itself in a retirement phase after missing some cues 
and colliding with the target vehicle.  The automated 
rendezvous system used on DART was NASA’s Advanced 
Video Guidance Sensor (AVGS). AVGS was later 
successfully used on the Orbital Express mission in 2007. 
This system uses cooperative retroreflective targets on the 
target vehicle and applies photogrammetric algorithms to 
the imaged target locations in a camera, much like SVS.  
AVGS improves upon SVS by using two active flood 
lasers to image the retro targets and filters out other light 
frequencies, making it more immune to varying lighting 
conditions. AVGS shows great promise but suffers from 
limitations of all target-based systems: the requirement for 
placement of targets on the vehicle and limited views over 
which pose can be measured. 

The aforementioned Orbital Express mission used four 
sensor systems to accommodate AR&D operations: a laser 
rangefinder for target range information, a visible light 
sensor for daytime pointing of the rangefinder, an infrared 
(IR) sensor for nighttime pointing, and the AVGS system 
for close proximity final approach and capture [25]. 

The Jules Verne ATV mission also used a series of 
sensors and instruments to successfully rendezvous and 
dock with the ISS using GPS, a videometer that bounced 
pulsed laser beams off of passive retroreflectors, and image 
pattern analysis [15]. Redundant back-up lidar systems 
used pulsed TOF lasers on the retroreflectors to confirm 
range, but not orientation. The ATV system is limited to 
close range operations, similar to AVGS, with the 
additional constraint of GPS for longer range operations. 

Stereo-vision has been used for tele-operation during 
the ETS-VII mission [31].  This system successfully 
demonstrated rendezvous and docking but was operated by 
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ground operators.  Similar systems were proposed for use 
on the TECSAS and ConeXpress (now Smart-OLEV) 
missions.  Stereo cameras are feasible as AR&D pose 
estimation sensors, but are susceptible to the same 
problems as other camera-based systems, in particular to 
varying lighting conditions, lack of features and low 
contrast, and errors in camera calibration. 

There have been several successful laser-based systems 
for AR&D. The RELAVIS system developed by Optech 
uses 3D lidar data to provide pose estimation of target 
vehicles [2][21].  RELAVIS is a shape-based lidar pose 
estimation system similar to Neptec’s TriDAR.  The main 
differences between these systems involve the hardware 
design, the fitting algorithms, and the subsequent accuracy 
and speed performance. The RELAVIS system was 
successfully tested on the U.S. Air Force XSS-11 mission 
in 2005 to provide range and bearing information. Neptec’s 
TriDAR system successfully flew on STS-128 and STS-
131 for both docking and undocking of the Space Shuttle 
to the ISS and has been selected as baseline for several 
future satellite servicing and docking missions.  

 
2.3 Autosynchronous Scanning 
 

Single-point flying spot scanners allow precise control 
and measurement. The traditional disadvantages of such 
scanners include the mass, volume, and power required for 
moving parts and comparatively slow data acquisition rate.  

The data rate can be mitigated by smart sensing 
techniques as described in Section 3. Speed and precision 
can also be optimized using an autosynchronous scanning 
design. First developed by the Canadian National Research 
Council (NRC), Neptec licensed and adapted the 
autosynchronous design as the Laser Camera System (LCS) 
for tracking SVS targets and imaging in space [42]. After 
the Columbia shuttle accident in 2003, the LCS was 
adapted for imaging and inspecting of the Space Shuttle’s 
Thermal Protection System (TPS) on orbit due to its low 
measurement noise [11]. The autosynchronous design 
allows for a very narrow instantaneous field-of-view of the 
detector that can follow the laser spot by using the two 
sides of the same mirror. The low noise at standoff 
distances of meters makes the autosynchronous design 
ideal for metrology applications, and Neptec has since 
adapted it for high-precision manufacturing applications in 
the Laser Metrology System (LMS) [51]. 

The same autosynchronous design was expanded to the 
aforementioned TriDAR AR&D sensor for long range pose 
estimation. The TriDAR multiplexes a TOF pulsed lidar in 
the same optical path as the triangulation-based continuous 
wave (CW) laser of the LCS, thereby optimizing the 
complementary nature of triangulation and TOF lidar [14]. 
Pose estimation is accomplished using real-time Iterative 
Closest Point (ICP) software originally developed for 
automatic target recognition [13][34]. 

The use of a TOF lidar in the autosynchronous 
triangulation design also greatly increases the dynamic 
range of the lidar by having the laser spot “walk off” the 

detector at closer ranges. Dynamic range defines the ability 
to maintain sufficient signal to detect distant, dark objects 
without causing the detector to saturate on close, bright 
objects. The dynamic range also allows the lidar to better 
scan through obscurants and is the basis for the Obscurant 
Penetrating Autosynchronous Lidar (OPAL) [52]. OPAL is 
essentially a TriDAR with the CW triangulation laser 
removed and with other modifications to enhance the 
obscurant penetration. It is currently used in a forward 
kinematic fashion using GPS and inertial information to 
geo-reference OPAL data to aid in landing helicopters in 
brownout or whiteout conditions [53]. If necessary, OPAL 
can still perform the same pose estimation as the TriDAR. 

 
2.4 Flash Technology 
 

Flash lidar typically refers to simultaneously acquiring 
all pixels of a 3D range image using TOF.  For the last 
decade, flash imaging has been perceived by many as the 
holy grail of 3D sensing because of its potential size and 
data acquisition rate. There are many ways to accomplish 
flash 3D imaging: Continuous wave signal modulation, 
avalanche photodiode (APD) arrays, and range gating. 
However, they all share the similar concept of flood 
illumination and detector array. A flash lidar acquires all of 
the data at once without moving parts; in doing so, it 
requires many times more instantaneous power than flying 
spot scanners because it divides the power across the many 
detectors of the pixel array. This division of power limits 
combinations of range, field-of-view (FOV), and resolution. 
Some flash lidars can zoom the FOV, but resolution is in a 
fixed relationship to FOV.  

Conversely, scanning sensors can often adjust scan size, 
resolution, and pattern which gives them an almost infinite 
zoom capability (limited by laser spot size) over a larger 
field of view and much further range for a given laser 
power.  By using smart sensing techniques (Section 3), a 
scanning lidar can be directed to gather only needed data, 
thereby minimizing scan time and making more efficient 
use of the available laser power. The smart sensing 
capability comes at the price of moving parts and increased 
power consumption compared to flash lidars.  The dynamic 
range of flash lidars tends to be much lower than flying 
spot scanners, particularly compared to autosynchronous 
geometry, because all of the range pixels in a flash lidar are 
made simultaneously from a single pulse or signal. 

It is now clear that flash imaging will not completely 
replace scanning lidars, but rather will trade scan volume 
and dynamic range for data rate, making them better suited 
for different applications such as 3D video and tracking 
faster objects over a smaller volume. 

 
3. SMART SENSING 

 
Real-time dynamic pose estimation opens the door to a 

variety of applications, each with different performance 
requirements. This section presents the technical approach 
Neptec uses for real-time pose estimation and introduces a 
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variety of applications that have been developed as a result, 
ranging from proof-of-concept to operational systems. 
These applications are introduced in the context of their 
different uses of the real-time pose estimation that lead to 
different requirements for pose estimation performance. 
These differences become important in the context of 
standardized pose estimation performance evaluations 
discussed in subsequent sections. 

 
3.1 The MILD Approach 
 

Development of the TriDAR AR&D system has 
provided key lessons learned in building real-time systems. 
A key lesson is maximizing whole system efficiency in the 
collection and processing of data to extract the information 
of interest. Efficiency is achieved through an approach to 
3D sensing that Neptec refers to as smart sensing. This 
approach applies a paradigm of “more information, less 
data” (MILD) with two key elements. First, intelligent 
algorithms process the raw 3D data directly at the sensor 
head. Second, the output of the processing algorithms 
drives the 3D scanner to gather only the data necessary to 
compute the next set of information. The system hence 
quickly converges on the collection of minimal datasets 
providing maximal information. 

The TriDAR AR&D system represents a basic smart 
sensing system. The autosynchronous scanning design 
allows highly flexible scan patterns. Figure 2 shows three 
typical scan patterns for the TriDAR with representative 
laser spot spacing at uniform time intervals. The Lissajous 
pattern (left) has high point density in the corners and low 
in the center making it useful for monitoring transitions at 
the edges. The Rosette pattern (center) has highest point 
density at the center and lowest at the periphery, much like 
the human eye nerves. This makes it ideal for high 
resolution imaging of central features while maintaining 
width and height in less important regions for alignment 
stability and monitoring purposes. The Spiral pattern (right) 
is uniform in angular and radial spacing and hence ideal for 
surface digitization, inspection, or for uniform distribution 
of features. 

Uniformly spaced raster scan patterns (not shown) are 
also typical for relatively static imaging such as LCS 
inspection of the Space Shuttles. Arbitrary patterns can 
also be used, limited only by the inertia of the scanning 
mirrors and galvo current. The three scan patterns in Figure 
2 make optimal use of the natural sinusoidal inertias to 
cover an area in the fastest time. A single pattern is 
referred to as a frame of data. Frame rates depend on the 
chosen pattern, pattern parameters (Lissajous nodes, 
Rosette petals, Spiral turns), number of points, and size. 
Full FOV frame rates of 5-10 Hz are typically achievable. 

Scan patterns are key to smart sensing real-time pose 
estimation. The patterns dynamically adapt to the pose 
estimate. The pose estimate and initialization algorithms 
are designed for unorganized point clouds and are not 
reliant on the scan pattern structure or a regular grid as 
with correlation operator techniques. Pose estimation is 

initialized using a Polygonal Aspect Hashing technique 
[36]. The hashing algorithm creates N-point polygons from 
the unorganized scan points and compares them to a 
reference model hash table. The cumulative matched 
polygons provide a limited set of pose candidates that are 
tested by selecting the one that best fits the scan to the 
database model. The key to optimum efficiency and 
performance is a sparse reference database, storing only 
the dominant, discriminating geometric features. This 
provides a sufficiently accurate initial pose estimate while 
keeping the number of matches manageable. 

The initial pose estimate is then used in a proprietary 
ICP algorithm to finely align the scan data to the model. 
The 6 DOF tracking uses the output pose estimate from 
one frame as the initializing pose estimate for the next 
frame using ICP [35]. The pose estimate is also used to 
adjust the size of the scan pattern to only gather data on the 
object or region as well as the position of the scan pattern 
within the sensor’s FOV. The size and position of the 
object is re-projected into the sensor FOV to define the 
new scan boundaries. Adaptively scanning in this manner 
collects only data necessary for the pose estimate. 
Adaptability is extended by changing the scan pattern and 
region as the target vehicle gets closer and fills the FOV. 
Scan patterns are optimized via pre-flight testing and pre-
programmed for specific ranges. Future work includes 
pattern selection automation from real-time metrics. 

Smart sensing mitigates the slower data rate and 
improves efficiency of scanning sensors. Flash-based 
sensors can gather large datasets very quickly but do so in 
a brute force manner where the laser power is distributed 
over the whole FOV, much of which does not fall on the 
target region of interest. With the autosynchronous scanner, 
all laser power can go towards generating useful, and 
ultimately used, data points. Furthermore, computational 
power is often a limiting factor and smart sensing can 
generate enough useful points per frame to max out the 
processing power while providing accurate pose estimates. 
The increased data rate of other systems means it often has 
to be sub-sampled to accommodate computational 
limitations for real-time processing. Combining these 
factors with the added data precision, autosynchronous 
scanning and the resulting real-time pose estimate can be 
of equal or better quality over a wider range of operations 
given the same computing hardware. 

Real-time 6 DOF pose estimation is an application itself 
for a class of operations that includes assembly, 
positioning, and docking. Target-based systems, like SVS 
and AVGS, can be highly accurate and reliable under 

Figure 2: Dual-axes scanning patters: 4x5 Lissajous (left), 8-
petal rosette (center), and a 9-turn spiral (right).  
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controlled conditions and range of orientations where 
targets can be used. Targetless tracking systems such as 
TriDAR and RELAVIS extend the capability and 
reliability to less controlled conditions, such as space and 
subsea [27], but are limited to shapes that have definitive 
geometric features [35]. The following sections discuss 
additional smart sensing applications that use real-time, 
dynamic 6 DOF pose estimation as an intermediate step 
towards extracting additional information. Such systems 
put different requirements on the pose estimation 

 
3.2 Dynamic Metrology 

Metrology describes the measurement of parts. 
Metrology traditionally involves static measurements, 
often through full digitization of sampled parts via a 
Coordinate Measurement Machine (CMM). Dynamic pose 
estimation opens up the potential for more robust and 
efficient measurement in situ for a class of metrology 
applications. As a proof-of-concept, Neptec developed a 
demonstration of measuring car door gap and flush while 
in motion on an assembly line, tracking the door to 
determine the location of the gap. 

A lesson learned in this process is that the pose estimate 
need not be precise. It only needs to be sufficient to aim 
the scanner near the gap. The gap and flush measurements 
themselves need to be precise in real time, and this can be 
accomplished via scanner precision and the ability to make 
many statistical measurements dynamically. 

 
3.3 Object Recognition 

 
A superset of real-time pose estimation is first 

recognizing the object to be tracked. Neptec’s pose 
estimation system was first derived from real-time 3D 
Automatic Target Recognition (ATR) work [13][34]. A 
key feature discovered in early ATR work is that salient 
features of 3D shapes can be sufficiently generated by 
sparse, but smart, scanning. Rapid scan patterns can 
acquire data and recognize the object in less than a second. 
Another lesson is that continual tracking and scanning can 
vastly improve the recognition confidence [7]. As with the 
metrology, the pose estimate need not be precise when the 
extracted information is the identity of the object, unless 
pose is also important for additional operations. 
 
3.4 Inspection and Digitizing 
 

Smart sensing can also be applied when the data itself is 
the application’s product. One class of applications that fits 
this circumstance is the digitization and inspections of 
parts or surfaces. Typically, this is performed under highly 
controlled conditions in which 3D data is gathered from 
multiple views of a part and stitched together to make a 
full 3D model. The controlled conditions are necessary to 
know the coordinate transformations between the views. 
The model is then assembled using the forward kinematics 
of known sensor and part positions. 

A less controlled approach uses unknown sensor 
positions but tracks fiducial targets to calculate relative 
motion between views. An even less controlled alternative 
that makes use of the 3D shape of the part to align multiple 
views. These approaches use inverse-kinematic solution in 
which the relative sensor positions are inferred from the 
multiple dataset alignments [6][39]. A lesson learned from 
LCS imaging of the Space Shuttle TPS is that the accuracy 
of the sensor pose estimate is essentially irrelevant. What is 
important is that the data alignment is accurate [11]. 
Inverse kinematic solutions will generally provide 
inaccurate pose estimates unless the sensor is near the 
centroid of the scan data as in 360° scanning. Section 4.4 
discusses this detail specifically. 

The MILD paradigm can play a particularly important 
role in 3D dynamic imaging. Real-time pose estimation 
comes from aligning the same features in multiple scans, 
hence redundancy is inherently required. Redundancy adds 
unnecessary data to the 3D model. When aligned, excess 
points can be eliminated or, more preferably, improve the 
model by extracting better surface measurements. More 
information is encoded using less data. The efficiency from 
such a framework allows the model to be built with linear 
complexity and real-time surface reconstruction [47]. 
 
3.5 Dynamic mapping, navigation, and Geographic 
Information Services (GIS) 

 
A second class of applications where the 3D data itself 

is the product is 3D terrain mapping. In principle, mapping 
is identical to object digitization, just with a very big object. 
In practice there are many differences. There is much less 
redundancy, use of multiple data sources (airborne and 
street-level lidar), and the need for synchronized high-end 
GPS and IMU navigation equipment to provide a forward-
kinematic solution with accuracies comparable to the 
sensor accuracy. Small angle errors can contribute 
significant errors to the geo-referenced location of a point. 
Compounding this problem, ground vehicles will often 
lose some or all GPS signal in dense urban environments, 
relying solely on the inertial systems which inherently 
suffer from drift errors. 

The inverse-kinematic solution can help to close the 
kinematic chain and improve the data by providing 
redundancy in both the sensor pose and the data pose. The 
redundant estimates (forward using GPS and IMU, inverse 
using data alignment) are not equal in weight. Generally 
speaking, the local pose estimate will be much better than 
the one acting through a moment arm. The pose estimates 
can use a weighted combination, such as in an Extended 
Kalman Filter (EKF). Such a system provides improved 
robustness to keep the EKF from drifting when navigation 
data is unavailable for short durations. Using tracking pose 
as the source data, this principle was successfully tested by 
the Canadian Space Agency (CSA) [1]. 

The approach is also the basis for the Optical IMU 
prototype used with Terrapoint’s truck-based TITAN lidar 
collection system [19]. The inverse pose estimate was 
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maintained by using redundancy from the multiple TITAN 
sensors and hence was still prone to drift error, but it is 
independent of the inertial drift error. Maintaining accurate 
sensor pose is not irrelevant, as in object digitization, 
because the data must be accurately geo-referenced. 

Closing the kinematic loop is also the basis for 
Simultaneous Localization and Mapping (SLAM). In the 
case of SLAM, absolute knowledge of location is absent. 
Only the inertia systems and scan data are available for 
generating both the map and locating the sensor (and hence 
the vehicle). SLAM is typically used for robotic rover 
navigation in unknown environments such as lunar and 
Martian exploration. The similarity between the 
requirements for the GIS mapping and rover SLAM means 
that similar real-time pose estimation techniques can be 
applied. Closing the kinematic loop for rovers in this 
manner has been investigated with Carleton University 
[33], Carnegie Mellon University [50], and with CSA for 
possible implementation on the Juno rover [23]. 

A lesson in closing the loop has been the difficulty in 
defining performance. It can be described independently 
for forward and inverse solutions, or combined. 
Consistency of the data is also a measure, as with object 
digitization, but ultimately absolute accuracy of the geo-
referenced data is the goal, complicating the evaluation. 

 
4. PERFORMANCE EVALUATION CHALLENGES 

 
Perhaps the largest challenge for smart sensing is the 

quantification of pose estimation performance in any 
meaningful way. It seems simple in principle: measure the 
pose of objects and compare to truth data. Neptec has done 
this with SVS and TriDAR for space mission qualifications. 

The problem with the approach is that pose estimation 
is highly situational. It is reliant on the quality of sensor 
data, processing algorithms, viewpoint, environmental 
conditions, and, perhaps most critically, on the object 
shape itself. (In a target-based system the shape is the 
arrangement of targets.) A pose estimation system might 
perform well when tracking one object in one setting, but 
perform poorly with a different object or different setting.  

Furthermore, the lessons learned in the previous section 
showed that the same system can be differently optimized 
for different applications with dramatically different 
requirements. One cannot generically evaluate such a 
system without first identifying both the specific 
conditions and application it will be optimized for. 

The following sections describe some of the 
components of the pose estimation chain and how they 
complicate performance measurement. 
 
4.1 Sensor Data 
 

3D sensor performance metrics typically describe the 
accuracy, precision, resolution, FOV, and raw data rates. 
Better performance in some of these metrics does not 
necessarily translate into improved pose estimation 
performance. A faster data rate does not provide improved 

pose estimation if most of the points do not fall on the 
target or if the computation system is saturated. 

Summary sensor metrics based on statistical properties 
do not always indicate key sensor behaviours that can 
affect pose estimation such as edge artifacts, intensity 
artifacts (black/white edges), dynamic range, saturation 
behavior, thermal and vibration stability, and other 
characteristics that can distort or affect the data.  

The pattern of collection is also of critical importance. 
A standard scanning lidar may collect 50,000 points per 
second but does so in a fixed raster scanning pattern over 
the FOV that takes seconds to scan. Object and sensor 
motion during scanning can grossly distort the data. The 
pose estimate from such a scan is ambiguous at best since 
it doesn’t represent a single fixed relative pose.  

Conversely, an autosychronous scanning lidar with the 
same quality specifications can scan in programmable 
patterns, producing much lower distortion distributed 
evenly across the pattern. All of the scanner data may be 
on target and useable if set up in a smart sensing control 
loop, and hence the “used data rate” might be higher and 
less distorted than other sensors with higher raw data rates. 
Sensor specifications are insufficient for pose evaluation. 

Flash lidars collect data simultaneously across all of the 
pixels, including close and far objects. While this can 
produce much unused data, a bigger concern may be the 
dynamic range. Simultaneous range measurements within a 
single scene cannot be too large, particularly if dark and 
shiny objects are in the scene, or else signal return will 
either be below some threshold or saturate the detector. 
Flash lidars typically achieve dynamic range on the order 
of a few hundred to one. Conversely, TriDAR is a scanning 
lidar that makes independent measurements with a bi-static 
optical design that can result in an effective dynamic range 
on the order of millions to one. 

Edge effects can also be of critical importance. TOF 
lidars tend to extend edges outward as the edge of the 
beam hits the surface even after the centerline has moved 
off. Triangulation laser systems tend to distort the peak 
shape and shift the edge toward or away from the sensor, 
depending on the edge orientation [51]. Phased lidar 
systems have similar edge effects that produce distorted 
edges that are not random noise. Edge distortions affect the 
fitting of the scan data and can degraded pose estimates 
when the edges are important to the shape. 

The above factors make the data, and resulting pose 
estimate, highly dependent on specific operational 
circumstances, complicating generic evaluation. 

 
4.2 Object Geometry 

 
Pose performance is highly dependent on object 

geometry, particularly weak geometry and degrees of 
freedom. The typical example for targetless pose is a 
sphere or a cylinder. Even with objects that have a defined 
pose, generalized quantification of performance is difficult. 
A coffee mug has a well-defined orientation in 6 DOF, but 
if the sensor cannot see the handle it has the same problem 
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as a cylinder. The accuracy is highly dependent on whether 
the sensor can see the handle or not. This is the real 
problem Neptec had in defining performance for the 
Hubble Telescope, shown in Figure 3 [35]. There is no 
single accuracy value that can describe this performance. 

The difficulty is compounded by operational 
circumstances that affect whether or not key features are 
measured or missed, including scan patterns and zoom. 
Generic pose estimate metrics are meaningless when 
accuracy depends on the object, view, range, and many 
scanning parameters.  
 
4.3 Algorithm Design 
 

It may seem trivial to state that the pose estimation 
algorithm affects performance. The problem is that the 
definitions of “better” and “worse” are often highly 
dependent on the specific operation. Tuning parameters 
may trade one feature for another, such as robustness for 
speed or accuracy.  

A common algorithm for pose estimation is the Iterative 
Closest Point (ICP), developed simultaneously by Besl and 
MacKay [4] and Chen and Medioni [9]. Many variants 
have been proposed and tested to improve ICP for specific 
optimizations such as speed or robustness. These 
improvements act on various components of the ICP 
algorithm itself: point matching, point rejection, weighting, 
minimization, convergence, and iteration criteria. As with 
parameter tuning, variations in the algorithms can also 
optimize for certain behaviors over others, complicating 
the evaluation process. When evaluating performance, the 
behavior that was optimized needs to be considered. 

 
4.4 Data Location Relative to Reference Frame  
 
Perhaps one of the most overlooked components of pose 
accuracy is the location of the reference point for which the 
pose is estimated. ICP and similar pose estimation 

algorithms align the centroid of the collected (and used) 
target points with the centroid of the matched points on the 
reference object, with orientation computed to minimize a 
distance error between matched points. The centroid of the 
collected data is likely not at the reference point on the 
object, and the centroid changes as the scan data changes. 

If only changes in object pose are of interest, the 
reference point may not be of great importance. However, 
if the reference point is meaningful to the operation, such 
as a docking port, the distance between this point and the 
collected data is problematic because it provides a moment 
arm to magnify orientation error. 

Let P be the 3 x n set of n points on the object in the 
sensor coordinate frame with no measurement error. Let Q 
be the same set of points in the object reference frame 
defined at the point of interest (such as a docking port). Let 
𝑷� and 𝑸�  be centroids of the two datasets. The true pose of 
the object is defined by the 3 x 1 translation vector T and 3 
x 3 rotation matrix R such that 

 
 𝑷 = 𝑹𝑸 + 𝑻𝑵 (1)  
Here N is a 1 x n vector of ones to complete the format. 
Likewise, the centroids map through the same pose, 

 
 𝑷� = 𝑹𝑸� + 𝑻 (2)  
 

Define E as a 3 x n set of sensor measurement errors for 
each coordinate of each point in P. The sensor 
measurements of these points then become 

 
 𝑷′ = 𝑷 + 𝑬 (3)  
and 𝑷�′ = 𝑷� + 𝑬� (4)  
 
Note that E has not been assumed to follow any model and 
so can include noise, artifacts, and point matching errors. 

The pose estimate is denoted (𝑻′,𝑹′)  and solves the 
best fit between 𝑷′  and Q. The rotation estimate, 𝑹′ , is 
typically found via pseudo inverse techniques. The 
translation estimate is then found via the data centroids by 

 
 𝑻′ = 𝑷�′ − 𝑹′𝑸�  (5)  

Define the pose rotation error to be 
 

 𝑹𝒆𝒓𝒓 = 𝑹[𝑹′]−𝟏 = 𝑹𝑹′𝑻 (6)  
or 𝑹′ = 𝑹𝒆𝒓𝒓𝑻 𝑹 (7)  
 
This definition sets the rotation error as the rotation matrix 
that moves the estimated orientation to the true orientation. 
Using (2), (5) and (7), the pose translation error is 

 

or 

𝑻𝒆𝒓𝒓 = 𝑻′ − 𝑻 = [𝑷�′ − 𝑹′𝑸�] − [𝑷� − 𝑹𝑸�] 
𝑻𝒆𝒓𝒓 = (𝑷�′ − 𝑷�) − (𝑹′ − 𝑹)𝑸�  
𝑻𝒆𝒓𝒓 = 𝑬� − (𝑹𝒆𝒓𝒓𝑻 − 𝑰𝟑)𝑹𝑸� (8)  

 

Figure 3: Hubble telescope (model inset) roll error as a 
function of roll angle, showing large error when viewing solar 
arrays edge on at ±90 degrees. 
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Here 𝑰𝟑  is the 3 x 3 identity matrix. Hence the pose 
translation error is a combination of the mean error of point 
measurement, 𝑬� , and the rotation error acting through 
moment arm 𝑸� . 

It is important to reiterate what 𝑸�  is. It is the centroid of 
the physical points on the object that are measured by the 
sensor, given in the object coordinate system located at the 
reference point on the object for which the position is 
being estimated. A large 𝑸�  means the centroid of the 
collected data is far from the reference point. Conversely, 
the position error of the reference point can be minimized 
if it is at the centroid of the sensor data. 

This feature of pose estimation is important in at least 
three ways. First, it is exactly the problem of inverse 
kinematics outlined in Section 3.5. For navigation, it is far 
more accurate to have the sensor gather data all around it 
such that the sensor is at or near the data centroid.  

Second, it means that even for a given object, 
environment, pose system, and view, the pose accuracy 
cannot be generically described. It matters where the 
chosen reference point for tracking is located. For absolute 
pose estimation applications, such as docking or grasping 
the object, the reference point is generally not a variable. It 
is the point of interest for the operation. 

Third, this moment-arm relationship inherently implies 
a trade-off when tracking an object. Gathering data 
surrounding the object reference point generally reduces 
positional error, but this must be traded off against the 
strength of the object shape for alignment. If the reference 
point is in the middle of a flat plane or on a smooth, 
spherical surface, perhaps a nearby detailed feature could 
provide a better pose estimate even with the added moment 
arm. Conversely, the strongest shape features might be far 
from the reference point and hence rejected for closer, 
though locally weaker, feature scans. 

The dependence of pose accuracy on reference point 
complicates the concept of generic performance evaluation 
methods. Specific applications with fixed operational 
parameters simplify the process. The next section looks at 
case studies of pose evaluation where the operations are 
limited but not fixed, and the resulting complexity. 

 
4.5 Verification and Validation Process 
 

The best solution to the evaluation problem may be 
through synthetic simulation. This seems counter-intuitive, 
especially since many computer vision journals do not 
accept purely simulated results. However, a simulator 
allows a battery of statistical tests over a wide range of 
testing parameters that would be impractically expensive to 
perform in live testing. If the simulator is sufficiently 
developed and validated, it can arguably provide better 
generalized performance metrics than live testing by 
covering a wider range of statistical variations. 

This is the paradigm NASA and Neptec have used for 
pose estimate system verification and validation (V&V) 
and certification processes. The process breaks down as in 
the diagram of Figure 4. 

This error propagation process describes testing for both 
target-based SVS and targetless, shape-based TriDAR. For 
SVS, NASA and Neptec used a battery of validated 
mission simulators. Initially, half-scale models were used 
in the lab to simulate space operations. After the initial 
operational flights of SVS, this process was replaced by 
general certification of the system. Data collection errors 
were modeled as target centroid errors based on the 
expected size of the target in the image plane. The sizes of 
targets for a mission were modeled using the Target Image 
Model (TIM) simulator. Certification was accomplished 
using a standard target array for a matrix of lab testing 
scenarios and comparing tracking and centroid error results 
with the specifications. 

For SVS, object definition errors consisted of errors in 
the target positions within the array as well as coordinate 
transformations between arrays and reference points. These 
positions could be affected by survey errors and thermal 
and pressure changes. The SVS Accuracy Analysis 
Program (SAAP) performed Monte Carlo simulations of 
SVS operations using these input errors propagated 
through the pose algorithms to evaluate performance.  

The SVS Accuracy Model (SAM) provided pose 
sensitivity to centroid measurement. An important output 
from SAM was which targets contributed the most towards 
pose accuracy and hence were the most sensitive to 
measurement error. These targets became the focus of real-
time flight analysis. The equivalent lesson for shape-based 
pose estimation is identifying key features that contribute 
to the data alignment and are hence the most sensitive to 
measurement errors and artifacts. 

Characterization of the input error sources and 
validation with full scale mission simulations in the lab 
were key factors to the acceptance of the above tools and 
process. Even with this analysis, the effect of shadowing 
on the targets could not be adequately simulated even 
though it was a primary cause of poor performance. Instead, 
the limitations of shadowing drove the operational 
timelines for SVS. Shadowing was indeed simulated, given 
the expected positions and orientations of the ISS and 
shuttle during a given flight. However, these simulations 
were used to pick operational timelines rather than to drive 
expected performance. 

Overall errors

Analyze the range of pose estimates for range of input errors

Algorithm propagation

Put range of input errors through operational algorithm

Object definition errors

Potential differences between expected and actual object

Data collection errors

Sensor characteristics and interaction with object features

Figure 4: Error propagation modeling for V&V. 
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A similar process was used for TriDAR performance 
evaluation. For missions STS-128 and STS-131, a full 
TriDAR simulator was developed for the purposes of 
mission planning [36]. TriDAR sensor characteristics were 
measured and incorporated in the simulation, including 
Gaussian noise levels, outlier characteristics, beam 
divergence, and material reflectivity.  Lab testing using 
scale models of ISS modules validated the simulator 
performance.  

To ensure the simulation was of the highest fidelity, the 
communications interface was designed to be identical to 
that of the actual sensor.  Therefore, the pose algorithms 
and hardware in the loop could not distinguish between the 
connections or data sources, whether from the simulator or 
the sensor.  In addition to simulation fidelity, this enabled 
robust contingency planning by being able to simulate any 
hardware failure and plan according to the results. Finally, 
for simulation, the fidelity of the target model was just as 
important as the fidelity of the sensor characteristics.  
Accurate ISS models were provided by NASA in the 
correct configuration expected during shuttle rendezvous.  
These models allowed the pose estimation algorithms to 
test output over many solar panel and radiator 
configurations, which may move during rendezvous, 
robotic platform configurations, which are unpredictable, 
and Russian/European vehicle configuration, which may 
change due to launch schedule.  A variety of approach 
trajectories were also tested to ensure robustness to 
different approach speeds, limited geometry in sensor field 
of view, and trajectories that are out of the approach 
corridor or off nominal. The evaluation method applied 
lessons learned from SVS and fully integrated the testing 
capabilities into the TriDAR operational system. 

This simulation capability was critical for success. 
Given all of the above factors, no existing AR&D facility 
can accommodate such testing fidelity and versatility. 
Because the TriDAR pose estimation system was exposed 
to this type of simulation sophistication, it was able to 
perform 6 DOF real-time targetless tracking of the ISS the 
first time it acquired data from the target, and tracked the 
ISS throughout a complete revolution in pitch via fly-
around during the second TriDAR mission on STS-131. 

Although it is clear that there are too many variables to 
simply define or generalize pose performance, some 
variables may already be set in stone.  For SVS, while 
some input was accepted for the positioning of SVS targets, 
optimal positioning could not always be met due to ISS 
constraints such as extra-vehicular activity (EVA) 
pathways and cabling.  Another operational constraint was 
orbital day/night frequency causing changes in lighting 
environment.  For TriDAR missions to the ISS, the 
addition of geometric targets was not permitted and the 
movable configuration of the ISS was not pre-determined.  
The shuttle rendezvous, approach, and docking trajectory 
was pre-defined up to an approach corridor.  The sensor 
installation site on the shuttle could only be chosen from a 
select few positions.  The laser on the sensor was qualified 
to be eye-safe, which reduced emitted power and thus 

affected range performance.  Finally, sensor operation was 
constrained such that it did not interfere with the shuttle 
crew during rendezvous operations.   

As detailed above, these pose solution aspects are 
interdependent. The operational constraints changed the 
sensor, in terms of emitted laser power and the way it 
operated.  The SVS sensor necessitated a specific design of 
SVS targets. In optimizing pose performance then, all 
aspects in the chain must be optimized together, rather than 
independently, as each aspect affects the others.  In this 
context, standardization in an absolute context may be 
limited to characteristics of a specific component that has 
utility across a broad spectrum of applications. 

Despite the challenges in quantifying performance, 
clearly there are measurable differences between pose 
estimation systems and many differences will cover a wide 
range of operations. Improvements in algorithms or sensor 
designs must improve something measurable or else the 
claim is moot. In this context, standardization may be 
useful for relative comparison of systems across a range of 
tests that span selected areas of the operating space. 
Neither the absolute nor relative performance in such tests 
may be generalizable, but they can highlight the strengths 
and weakness of various systems. The following section 
develops a framework for such tests. 

 
5. EVALUATION FRAMEWORK 

 
The premise for the proposed evaluation framework is 

similar to that of the performance evaluation processes for 
SVS and TriDAR. The framework allows for two types of 
testing: relative performance comparisons over a range of 
tests that span useful operational space, and absolute 
performance evaluation for specific operations in synthetic 
simulation using a model of the pose estimation system 
that has been certified using the same set of tests. 

Clearly, the absolute evaluation is more involved and 
expensive, but modeling and validation only needs to be 
done once and can then be inexpensively applied to a 
variety of operational circumstances. Figure 5 shows a 
rough outline for the evaluation framework. The following 
sections discuss the framework components. 

 
5.1 Pose Estimation System Categorization 
 

The first step in evaluating a pose estimation system is 
to define the category of the system by its operational 
scenario. Target-based systems need to be evaluated 
separately from shape-based systems. Within target-based 
systems there are many sub-categories. Some target-based 
systems work with arbitrarily placed target arrays with no a 
priori knowledge of the target locations. Others use fixed 
target arrays to be attached to the object, or can be placed 
arbitrarily but require surveying of the targets to define an 
a priori array. (SVS falls into this category.)  

There are also hybrid target/targetless systems. In one 
version, a 3D sensor images portions of the object and a 
second fixed sensor tracks targets on the first sensor. The 
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pose estimate of the object is then a function of both 
kinematic chains. Another type of hybrid system operates 
nominally as a targetless system for easy to track shapes, 
but uses fiducial targets added to difficult shapes to be 
tracked as  reference points across multiple datasets. 

Section 3 demonstrated that the purpose of the pose 
output is also critical in defining the category. Assembling 
parts requires accurate relative pose estimates. Docking, 
grasping, and navigation require accurate absolute pose 
estimates. (TriDAR falls in this category.) 3D imaging for 
inspection requires accuracy in the final model, not the 
pose estimate. (LCS falls in this category.) Dynamic 
tracking for in situ measurements require only approximate 
absolute pose estimates. (LMS falls in this category.) 

Multi-use systems complicate the categorization step. 
TriDAR can perform imaging and inspection operations 
similar to LCS and LMS. This is not to say that 
categorizing TriDAR is impossible, but it would be re-
categorized to be evaluated for each type of operation to 
ensure the proper metrics are evaluated. 

It is outside the scope of this paper to exactly define the 
operational categories. It is also outside the scope to define 
the important performance metrics to quantify. Those will 
tend to follow the category. Generally speaking, pose 
estimation systems provide either 3 DOF or 6 DOF poses. 
The accuracy, precision, and resolution of the position and 
orientation are obvious metrics, as is the rate of pose 
output. Many other metrics may be defined. Some systems 
provide velocity estimates as well. Sensitivity of the pose 
estimation system to various conditions might be of 
interest, such as lighting, surface reflectivity, shape or 
target placement errors, and so on. This paper focuses on 
the evaluation process rather than specific metrics. 

 

5.2 Pose Estimation System Boundaries 
 
Within a category of operation, evaluation requires 

definitive boundaries between the system being tested and 
the test parameters. In some cases this may be fixed by the 
category. Pose estimation systems using a fixed target 
array can only be tested using that target array. Systems 
using arbitrary target placement should be tested across 
many array configurations with varying strength. Shape-
based targetless system should be tested against a variety 
of shapes and surface types and reflectivity. 

Sections 3 and 4 discussed in detail the range of 
potential parameters within a given system, including data 
collection parameters, pose algorithm parameters, and 
computational platform. Target tracking parameters 
(window sizes, feature matching, centroiding) may also fall 
into this category for target-based systems. 

On the other side of the boundary are the operational 
parameters, including environment (lighting, clutter, 
thermal), object properties (size, shape, materials, 
reference point), and operational scenario (object and 
sensor motion, sensor viewpoints). From this division it 
might be tempting to define a set of tests where the 
operational parameters are held constant and the pose 
system parameters are varied, and vice versa. There are 
two problems with this approach: the number of 
permutations of parameters is prohibitively large, and the 
system parameters tend to be tuned to the operational 
scenario and, therefore, they are not independent factors. 

These two problems tend to cancel each other out 
somewhat. The vast majority of permutations of pose 
system parameters and operational scenarios can be 
eliminated because the combinations would never be used 
together. Rather, for a given set of operational scenarios 
there are a limited set of realistic system parameters. This 
doesn’t eliminate the problem, however, but rather offloads 
the problem to a submission of optimized parameters for 
each operational scenario for testing. The problem then 
becomes optimizing the parameters for each test scenario 
which may involve running tests using multiple parameters 
to find optimum settings. Hence the problem is not avoided 
but is transferred from the evaluation tests to the planning 
stage. 

This problem is minimal for systems with limited 
parameter settings or if fixed instructions exist for 
optimizing the system. For other cases the solution may be 
to perform parameter selection through rigorous testing in 
synthetic environments. This is a bit of a chicken and egg 
approach as the testing itself may be used to validate the 
models used for simulation, but if validation does occur it 
confirms both the model and the parameters. If not, the 
model will need improving.  

The paradigm in this framework is to compare systems 
in appropriate scenarios using appropriate parameters. If 
one performs consistently better, it is reasonable to predict 
that it will perform better in similar operations. It also 
provides an estimate of absolute system performance.  

 

Figure 5: Proposed performance evaluation framework. 
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5.3 Standardized Tests 
 
Two types of tests are proposed that model the V&V 

and certification tests in the NASA evaluation process. The 
first set characterizes the performance over a range of 
conditions and are therefore best described as 
characterizations. The test scenarios should span some 
realistic conditions for the category of operation. The 
results of these tests merely provide relative performance 
of systems, perhaps with an estimate of absolute 
performance for similar operational scenarios.  

The most difficult part of such a process is the ability to 
define “similar”. Given the boundaries from the previous 
section, it is the operational parameters that need to be 
varied here. These include, but are not limited to, range, 
viewpoint, environment, relative motion, and, perhaps 
most importantly, object shape. 

Object shape is perhaps the most difficult to quantify in 
terms of influence on performance. Section 6 provides a 
framework for defining shapes in such terms. Further, an 
optimum shape artefact for pose estimation is defined 
using these shape metrics. Hence a series of 
characterization tests can vary the object shape from weak 
to strong as defined by these metrics. In this context, 
“similarity” to a specific operation can be defined in terms 
of the shape metrics whereby the intended operational 
usage is analyzed in terms of these shape metrics. 

The second set of tests certifies that synthetic models 
accurately represent the system performance. The purpose 
of certification is to demonstrate that an analytical model 
of the pose system is representative in terms of 
performance, providing confidence that simulation results 
provide a reliable estimate of system performance in 
operations not physically tested. Certification can provide a 
higher level of confidence and reliability in expected 
performance for a given operation. Certification does not 
include testing the performance of a system for the 
intended operation. Rather, it certifies that the model 
adequately represents the system performance within some 
boundaries. Synthetic operations can be performed on a 
case by case basis as needed by the system user to evaluate 
expected performance, whether for selecting systems or for 
predicting operational outcomes. 

Certification is more complex and therefore more 
expensive for the system vendor. The expense of 
developing a synthetic operation that mimics the user’s 
scenario also adds expense to the user. However, for 
critical operations, this process is much less expensive than 
developing a laboratory mock-up test for every operation, 
or fully implementing a system to test functionality. 
Certification involves several components. The pose 
estimation system needs to be modeled end-to-end, 
including sensor measurements and algorithms. 
Characterization tests described in the prior section also 
need to be modeled in the same synthetic environment. The 
characterization tests can then be re-run in simulation and 
results compared to the results of the real characterization 
tests. Performance metrics can then be compared. Further, 

synthetic testing allows a much wider range of tests with 
minimal extra effort. Small variations can be used to define 
statistical properties to compare to the real characterization 
results, as well as provide sensitivity analysis. Monte Carlo 
simulation can also bound expected performance. 

Standards for the simulator platform and pose system 
would need to be well defined. As outlined in Section 4.4, 
SVS certification involved a battery of laboratory tests to 
demonstrate fiducial target tracking accuracy and 
robustness. The simulation environments of SVS Accuracy 
Analysis Program, SVS Accuracy Model, and Target 
Image Model could then reliably use the estimates for 
analysis and prediction. Missions were also simulated in a 
full 3D synthetic environment fed through the SVS video 
processing system to measure performance. 

The lessons learned from SVS were used in the TriDAR 
testing environment. Instead of numerical models, the 
simulator included a full 3D synthetic environment and 
sensor simulator. The testing capability is built into the 
operational system. It is only a matter of switching the data 
source from the real sensor to the sensor simulator viewing 
the synthetic environment. In this case, the synthetic 
environment was not an additional effort because the pose 
estimation system uses the same synthetic models to track 
the real objects during real operations. 

The same approach can be used for standardized 
certification. A standardized 3D simulation platform can 
operate modularly, with the pose estimation system 
abstracted out as a plug-in model, and the modeled scene 
and operation using standard format objects. 

 
6. QUANTIFYING SHAPE FOR POSE ESTIMATION 

 
One approach to quantifying shapes has been addressed 

through constraint analysis, an application of Principal 
Component Analysis. Constraint analysis directly assesses 
the sensitivity of the pose error to differential variation in 
pose and does not use geometrical features of the object. 
The assessment is performed through the numerical indices 
which are formed of the eigenvalues of the covariance 
matrix. Constraint analysis was introduced by Simon in [45] 
for optimal selection of points used to accurately position 
the patient for radiation therapy. A continuous version of 
constraint analysis, the Continuum Shape Constraint 
Analysis (CSCA) was presented in [32] and [43]. In CSCA, 
the discrete summation over points in the covariance 
matrix formulation was replaced by integrals over triangles 
constituting the CAD model of the shape. This way, the 
indices derived from CSCA become independent of the 
scanning process and, if the mesh is fine enough, reflect 
the pure geometry of the shape. CSCA indices were used 
for selection of an optimal scanning direction and for 
selection of the “best” scanning area on the object’s 
surface. The following section give a brief insight into 
CSCA theory and how it was used to generate an 
optimized shape for pose estimation. 

Principal Component Analysis is also widely used in 
computer vision for face and gesture recognition. The 
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initial application of it for facial recognition and detection 
was most likely introduced by Turk & Pentland in [48], 
and further developed in [3] and [12]. For the use of PCA 
for gesture recognition, see, for example, [8]. 

The detailed discussion on invariant features (see, for 
example, [17], [18], [41], [44], and [49]), shape descriptors 
([5], [22] and [46]) and identification of salient features in 
range images ([24] and [29]) and their usage in shape 
registration is beyond the scope of this paper.  
 
6.1 Constraint Analysis Indices 

 
We consider a problem of alignment, or registration, of 

a shape with its misaligned copy. A point-based 
normalized cost function, which is minimized to obtain a 
small pose estimate, 𝒑 = (𝒅,𝜽) = �𝑑𝑥 ,𝑑𝑦 ,𝑑𝑧 ,𝜃𝑥 ,𝜃𝑦,𝜃𝑧�, 
of the misaligned shape, can be represented as  

 
 

𝑬 =
𝟏
𝟐𝑵

�∆r𝒊𝑻∆r𝒊

𝑵

𝒊=𝟏

 (9)  

 
where ∆𝐫𝑖 = 𝐫𝑖′ − 𝐫𝑖 = 𝐝𝑖 + (𝟏 + 𝛉×)𝐫𝑖 . The notation 
𝐜 = 𝐚×𝐛 is the matrix implementation of the vector cross-
product 𝐜 = 𝐚 × 𝐛 with the skew symmetric construct 
operator defined by  
 
 

 

(10)  

 
In point-to-plane registration, ∆𝐫𝐢 is represented as Δ𝐫i =
𝐧𝐢𝐧𝒊𝑻(𝟏 − 𝐫𝐢×)𝐩, and the cost function becomes  
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where the matrix E is 
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  (12)  

and 𝐧𝑖 is the unit-length normal vector to the surface at the 
point 𝐫𝑖 . Using eigenvalues {𝜆𝑘} and eigenvectors {𝐪𝑖} of 
the matrix E, the cost function can also be represented as  
 
 

𝑬 =
𝟏
𝟐
𝐩𝐓𝐄𝐩 =

𝟏
𝟐
�𝝀𝒊(𝐩𝐓𝐪𝒊)𝟐
𝟔

𝟏

  (13)  

The eigenvector 𝐪6, which corresponds to the 
transformation with minimal error, is an important 
parameter: larger values of 𝜆6 entail larger residual errors, 
and the pose algorithm continues its iterations longer 
delivering better pose accuracy.  

The constrained analysis indices are functions of the 
eigenvalues {𝜆𝑘} . The following relations between the 
norm of the small pose error �𝛆𝑝�, the standard deviation 
𝜎𝜀𝑝  of the small pose error and the upper boundary 𝜀 
residual error hold: 

 
Minimum Eigenvalue Index: 
 
 𝐼𝑚𝑖𝑛 = �𝜆𝑚𝑖𝑛  

�𝛆𝑝� ≤
1
𝐼𝑚𝑖𝑛

𝜀   
(14)  

 
Inverse Condition Number Index:   
 
 

𝐼𝑖𝑛𝑣𝑐𝑜𝑛𝑑 = �
𝜆𝑚𝑖𝑛
𝜆𝑚𝑎𝑥

 

�𝛆𝑝�
‖𝐩‖

≤
1

𝐼𝑖𝑛𝑣𝑐𝑜𝑛𝑑
𝜀   

(15)  

 
Noise Amplification Index (NAI) [30]: 
 
 

𝐼𝑁𝐴𝐼 =
𝜆𝑚𝑖𝑛
�𝜆𝑚𝑎𝑥

 

�𝛆𝑝� ≤
1
𝐼𝑁𝐴𝐼

𝜀   
(16)  

 
Expectivity Index [32]: 
 
 

𝐼𝑒𝑥𝑝 = ���
1
𝜆𝑘𝑘

�

−1

 

𝜎𝜀𝑝 =
1
𝐼𝑒𝑥𝑝

𝜎𝑑𝑎𝑡𝑎
√𝑁

   

(17)  

 
where 𝜎𝑑𝑎𝑡𝑎 is the upper boundary on the measurement 
noise on the data points. 

The above formulas show how the indices can be used 
to assess an object’s view for pose estimation: high values 
for each index indicate better pose performance in some 
aspect. (They generally cannot all be optimized 
simultaneously.) Maximizing Imin, we minimize the 
smallest semi-axis of the error ellipsoid pTEp = 1, and 
hence limit the largest pose DOF error. Maximizing INAI, 
we minimize the eccentricity of the error ellipsoid, 
meaning we spread the error as evenly as possible. 
Maximizing Iinvcond, we minimize the range of pose errors 
across the DOFs. The Expectivity Index accounts for all 
eigenvalues and provides an exact estimation of the 
standard deviation of the pose error norm. Figure 6 
illustrates the above relation and presents a graph of the 
NAI vs. norm of the pose error for the Space Shuttle. Note 
that pose error decreases with NAI index up to some value 
above which little statistical improvement is achieved. 
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 In [28], the basis of Continuous Shape Constraint 
Analysis (CSCA) was developed. The summation over a 
discrete set of points was replaced by integration over the 
triangles which form the CAD model of the shape. 
Moreover, a viewing direction, v, was taken into account. 
The continuous version of the matrix E is:  

 
 

𝑬 = � �
n𝑖n𝑖𝑇 −n𝑖n𝑖𝑇r𝑖×

r𝑖×n𝑖n𝑖𝑇 −r𝑖×n𝑖n𝑖𝑇
� 𝑣𝑑𝑆

𝑆

 (18)  

 
where the viewing factor v is 
  
 𝑣 = �𝐯

T𝐧, if 𝑑𝑆 is unobstructed: 𝐯T𝐧 > 0
0, if 𝑑𝑆 is obstructed: 𝐯T𝐧 < 0 

� (19)  
 
CSCA versions of the above indices can be graphically 

represented using a view-sphere. Scanning directions are 
mapped onto the sphere of a desired resolution to create a 
sphere-mesh as shown in Figure 7 (left). The index value 
for a given shape for a particular scanning direction is 
found by projecting this direction out from the origin 
through the sphere surface, and the radial distance of the 
intersection is then taken as the index value. Figure 7 (right) 
shows the spherical map of the Expectivity Index, along 
with the cube polyhedron and the view-sphere. To read the 
function value from any given scanning direction, one can 
simply read the radial distance to the surface of the 
function-map along the direction of the vector.  

 
 

6.2 Optimized Shape for Pose Estimation 
 

Constraint analysis was used to develop a methodology 
for design of a 3D target shape for accurate pose estimation. 
The shape selection was based on the Expectivity Index. 
The index was computed for different families of solids, 
and among 116 solids, the symmetric cuboctahedron was 
selected as a shape which has the highest minimum and 
maximum values of Expectivity Index over the 360 
degrees scanning cone [10]. Figure 8 (left) shows the 
inhomogeneous index map for the dodecahedron compared 
to the steady high index value map for the cuboctahedron 
in Figure 8 (right).  

The symmetric cuboctahedron delivers ambiguous 
poses. This means that registration errors are equally low 
for different poses and the cost function has multiple local 
minima. The symmetric cuboctahedron has 24 rotational 
symmetries and its cost function has 8 local minima. To 
overcome this ambiguity, the symmetric cuboctahedron 
was transformed into an asymmetric shape, named the 
Reduced Pose Ambiguity Cuboctahedron (RPAC).  Each 
face of the RPAC has a unique set of dihedral angles 
𝜃𝑘𝑗 = 𝑐𝑜𝑠−1(𝑛𝑘,𝑛𝑗)  between this face and the adjacent 
faces. The deformation parameters were also chosen in 
such a way that the Expectivity Index for RPAC had high 
values from all views. The RPAC is shown in Figure 9. 

To validate the suitability of the RPAC for pose 
estimation, a plastic model of the shape was scanned using 
Neptec’s LCS. The graph of the Expectivity Index vs. pose 
error presented in Figure 10 shows that all RPAC’s views 
deliver approximately equal pose errors. 

The uniqueness of the RPAC’s dihedral angles implies 
a possibility to use a look-up table (LUT) for pose. A LUT 
could therefore provide an independent pose measurement 
from that of the generalized shape pose algorithm, such as 
ICP, or initialization estimate to test the system. If used as 
a fiducial target, the RPAC and LUT can provide high-
accuracy 3D pose estimation at high frequency since the 
LUT requires few surface measurements and no iterations.  
In this context, it can be attached to a moving object or act 
as a fixed object as viewed from a moving sensor, 
providing rapid and accurate 6 DOF pose.  

A LUT was developed using a CAD model of the 
RPAC, and a representation of the stored reference data 

Figure 7: View-sphere (left) and graphical representation of 
Expectivity Index for a cube (right). 

 

Figure 6: Shuttle model (inset) with NAI vs. pose error norm 
over 1000 pose views. 

 

Figure 8: Expectivity Index maps for Cuboctahedron (left) 
and Dodecahedron (right) 
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can be seen in Table 1. The unique geometry is expressed 
in the LUT in terms of relationships between specific sets 
of faces, one set for each face of the RPAC. Each set refers 
to a central face (face 0) and the three neighbouring faces 
with which it shares an edge (faces A, B and C). The LUT 
incorporates: a) Normal vectors Ni and vertices 
[V1, V2, V3]i for each face i of the RPAC, 1 ≤ i ≤ 20; b) 
angles θA , θB  and θC between the normal of face A, B or C 
and that of the central face 0. Within each set, all the data 
are sorted into that specific [0,A,B,C] sequence. The 
sequencing criterion is different for different sets; c) Group 
numbers GA , GB  and GC of the angles in a particular set 
(all angles, according to their numerical values, are divided 
into groups); d) The sequencing criterion M used to put a 
given set of data into its [0,A,B,C] sequence.  

 
Table 1: Data representation in RPAC LUT. 

Central 
Face 

(Face 0) 
Face A Face B Face C 

[A,B,C] 
Sequencing 

Criterion 
 [θA]i [θB] i [θc] i  
 [GA] i [GB] i [GC] i  

[N0]i [NA] i [NB] i [NC] i  

�
V0,1
V0,2
V0,3

�

i

 �
VA,1
VA,2
VA,3

�

i

 �
VB,1
VB,2
VB,3

�

i

 �
VC,1
VC,2
VC,3

�

i

 M i 

 
The pose algorithm using the above LUT data is called 

Face Normal Pose Estimation (FNPE) [40]. The steps of 
FNPE can briefly described as follows: 1) Identify the 
planes and normals in the point cloud data using RANSAC 
and then identify best-fit triangles; 2) Identify the required 
[0,A,B,C] pattern in the fitted triangles and calculate the 
corresponding angles between faces; 3) Execute the table 
lookup algorithm (this procedure also determines the best-
fit rotation between point cloud normals and reference 
normals); 4) Rotate the model to the point cloud using the 
previously found best-fit rotation, and determine the 
translational vector by simultaneously minimising the 
distances between each set of points in the point cloud and 
its corresponding reference plane (from the rotated model). 

Figure 11 represents the result of an experiment in 
which 50 FNPEs were generated for each of 15 different 
lidar scans of the RPAC, scanned using Neptec’s LCS. 
Since no truth data were available for the poses of the 
RPAC in these scans, each FNPE was used to initialize the 
ICP, which was run using a “cleaned” version of the point 
cloud (to maximize the accuracy of the final ICP pose). For 
each different point cloud, FNPE error (or ICP correction) 
is the difference between an individual FNPE and the mean 
ICP pose estimate of that point cloud. The ICP orientation 
correction is described using φ, which is the magnitude (in 
degrees) of the angular component of the error quaternion 
between the FNPE and ICP poses. Similarly, the ICP 
displacement correction is the magnitude (in [mm]) of the 
displacement vector. The fit quality of the FNPE is 
assessed using the root-mean-squared distance between 
each point in the point cloud (also called root-mean-
squared error, or RMSE), and the corresponding closest 
point on the model. The two curves shown in the figure are 
cumulative error density plots of the results, in terms of 
orientation error and RMSE.  

 

 
Figure 11: Error characteristics of 750 FNPE of the RPAC 
using scans from Neptec`s LCS. Colour represents ICP 
displacement correction in mm. 

 
FNPE was also tested in simulations, using simulated 

lidar scans generated from 2000 views around the RPAC, 
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Figure 9: Reduced pose-ambiguity cuboctahedron (RPAC): 
plastic model (left) and Expectivity Index map (right) 

 
Figure 10: Experimental results for RPAC. 
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evenly distributed in view angle. Figure 12 (top) shows a 
sinusoidal projection of the positions of all 2000 
viewpoints, coloured according to the RMSE (in mm) of 
the pose estimate generated from that view. For each 
viewpoint, the FNPE pose was used to initialise ICP (using 
the entire point cloud, not a “cleaned version”). Figure 12  
(bottom) shows the same sinusoidal projection of 
viewpoints, coloured according to the RMSE of the final 
ICP pose. Empty portions of the plot represent views from 
which an FNPE could not be made. There are two possible 
reasons for this: the pattern of faces needed for pose 
estimation is simply not visible when scanning the shape 
from that perspective, or the pattern of faces is technically 
visible but could not be reconstructed from the available 
point cloud data. The lower left portion of the plot shows a 
region demonstrating the former case. Many of the failures 
in the right hand portion of the plot reflect the latter. Re-
optimisation of the RPAC could possibly prevent the first 
scenario entirely, and reduce the degree of algorithmic 
optimisation necessary to prevent the second. The high 
error observed in the upper right hand portion of the plot, is 
the result of a combination of the (parametric and 
algorithmic) implementation of FNPE, point cloud noise, 
scan density, and basic RPAC geometry.  

 
 

 
Figure 12: Root-Mean-Squared Error between point cloud 
and model corresponding to each of 2000 evenly distributed 
views around the RPAC: (top) LUT-based pose estimate, 
(bottom) after subsequent application of ICP using LUT-
based estimate as initial guess. The scale is in mm. 
 

When the FNPE technique was applied to real data from 
Neptec's LCS, the average difference between the 
estimated orientation and an ICP-based orientation was 
1.03 degrees. The average difference between the 
estimated position and ICP-based position was 1.08 mm. 
Although the FNPE technique requires more development, 
it is clear from the experimental and simulated results 
shown that this approach can be used with the RPAC for 
accurate pose estimation, and warrants further study. 

 

6.3 Application to Performance Evaluation 
 

The constraint analysis indices provide a set of metrics 
that define shapes in terms of their pose estimation 
strengths, and the Expectivity Index correlates with the 
norm of the pose error vector. A set of standard object 
artifacts can be developed covering a range of pose 
strengths and used in the characterization tests described in 
Section 5.3.1. The standard artifacts can then be described 
by their indices in tables. Additionally, a standard toolset 
would need to be developed to define the metrics for a 
particular user`s operational object(s) or scene. 

These artifacts and tables then complete the 
characterization and certification tests. For simpler 
operations, a user would simply analyze their object to 
determine the shape metrics, and look up test results for the 
closest representative test, or interpolate between bounding 
tests. This would quickly narrow down the pose estimation 
systems that can meet their operational needs. 

For more critical operations where synthetic simulation 
of the operation is necessary, system certification would be 
accomplished using the standard artifacts, both for real in 
the characterization tests and repeated in a synthetic 
environment using virtual artifacts. 

Finally, the standard artifacts could be used by vendors 
of pose estimation systems for self-improvement over a 
range of object pose weaknesses and to optimize, and 
possibly automate, their own system parameter settings by 
evaluation of object shape metrics. 

 
7. SUMMARY AND CONCLUSIONS 

 
This paper presented many of Neptec`s lessons learned 

over 20 years of real-time, dynamic pose estimation system 
development, operations, and performance evaluation. 
Emerging sensor technologies are creating even higher 
data rates with smaller sensor footprint and better 
reliability. smart sensing techniques use information 
extracted from the data to drive the gathering of new data 
to optimize whole system efficiency, allowing very high 
dynamic range and significantly reducing wasted effort 
gathering and processing unnecessary data. 

These capabilities have introduced challenges in the 
performance evaluation of pose estimation systems. More 
traditional systems use fiducial targets, often in fixed 
arrays that limit the operational parameters. The newer 
shape-based, flexible, smart sensing pose systems open up 
a wide variety of new possible operations, with a selection 
of examples provided for which Neptec has operational 
applications at various levels of development. Each 
application uses the pose estimate differently and so relies 
on different performance characteristics. Additionally, in 
being this flexible, these systems provide significantly 
more parameters for optimization and testing. 

Certification of the target-based SVS for assembling the 
ISS on over 20 shuttle missions has provided many lessons 
learned for designing V&V and certification tests. Many of 
these lessons were incorporated into the TriDAR 
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performance evaluation process. A critical lesson for 
flexible pose estimation systems is that performance 
cannot be generalized due to heavy reliance of 
performance on object shape and views. 

What can be generalized are the process steps to 
characterize a system over a range of operations and object 
shapes, as well as process steps to certify system models 
for synthetic testing of the intended operation. The former 
tests might be sufficient for simpler operations, whereas 
certified simulators and synthetic testing may be required 
for more critical operations where confidence in 
performance is necessary, thereby reducing risks and 
expenses of alternative means of testing. A generalization 
of these process steps have been turned into a proposed 
performance evaluation framework presented in this paper. 

The reliance on shape potentially undermines the 
proposed approach, but this is solved by the use of metrics 
that describe objects and views in terms of their pose 
estimation strengths and weaknesses. These metrics have 
been used to design, build, and test an optimized shape 
(RPAC) for system performance evaluation by removing 
object weaknesses from the operation. A lookup table for 
the RPAC has also been developed for comparison and 
initialization of pose estimation systems, and can also be 
used as a high-fidelity, high-speed 3D target for many real-
time 6 DOF pose estimation problems. The same design 
process can be used to vary the shape strengths to define a 
standard test set for characterization and certification. 

Much of the proposed framework for performance 
evaluation is based on experience and completed works, 
including testing of the RPAC and building a LUT for 
rapid pose estimation. However, many details still need to 
be addressed such as classification systems, ranges of 
operations, ranges of shape metrics and artifacts, 
standardization of synthetic testing tools, and even the 
particular system metrics to test. 
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