
INTERNATIONAL JOURNAL OF INTELLIGENT CONTROL AND SYSTEMS
VOL. 17, NO. 1, MARCH 2012, 14-21 

An Eff cient Non-stationary Jammer Filtering
Method for Spread Spectrum Conditioning

Lichuan LIU

Abstract— In this paper, we propose a new technique to effec-
tively suppress non stationary jamming in direct sequence spread
spectrum (DS/SS) communication systems. This technique com-
bines a new scheme of instantaneous frequency (IF) estimation
with the projection based interference suppression. In order to
capture jammer subspace, a time-varying autoregressive (TV-AR)
modeling is used to estimate the IFs of the non stationary jammer
signals. Orthogonal polynomials are used for the basis function
of the TV-AR model to reduce the computational complexity. The
jammer subspace is constructed from the models governed by the
estimated time-varying IFs. The estimated jamming interference
is removed from the received data by subspace projection,
resulting in less distortion to the desired signal. The performance
of this approach is analyzed and compared with approaches using
time-varying notch filtering.

Index Terms— Time-varying AR model, non-stationary jam-
mer, instantaneous frequency, subspace projection, orthogonal
base function.

1. INTRODUCTION

D IRECT-sequence spread-spectrum (DS/SS) communica-
tion systems have a certain degree of inherent immunity

to intentional and/or unintentional jamming [1]. However, in
some applications, the jammer might be much stronger than
the desired DS/SS signal, and the processing gain due to
spreading might be insuff cient to provide enough jamming
resistance for decoding the useful signal reliably. In such
cases, jammer suppression needs to be done prior to symbol
detection. For stationary interference, many jammer mitiga-
tion techniques have been developed to remove its effect
adequately [2] [3]. However, the non stationary interferences
cannot be adequately suppressed using a single domain mit-
igation algorithm due to the fact that the signal parameters
are time-varying. Frequency modulated (FM) interferers are
such examples. Many interference suppression techniques are
reported and most of the techniques use IF estimation [4] and
time-frequency analysis (TFA) [5]. The disadvantage of TFA
is its large computational burden and slow convergence.

To speed up convergence and lower the computational com-
plexity of TFA, this paper proposes to estimate the IF, based
on TV-AR modeling [6]. Parametric analysis and modeling of
signals using a TV-AR model with time varying coeff cients
has found applications in a variety of contexts including non
stationary signal processing, spectral estimation, radar signal
processing and others [7] [8]. In communication it is an
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eff cient scheme for suppressing rapidly varying non stationary
interference [8] [9].

There are several potential advantages to use time-varying
AR [7] [10]. In some cases the system model may be more
realistic since it allows for the continuously changing behavior
of the signal. This should lead to increased accuracy in signal
representation. In addition, the method may be more eff cient
since the inclusion of time variations in the model should
allow analysis over longer data windows. TV-AR modeling
approaches are generally good for detecting multiple time-
varying spectral peaks or the IF, and it can parameterize a
non-stationary process with a small number of parameters.
However, for the time-varying linear prediction method, the
predictor coeff cients are obtained by solving a set of linear
equations. Because the number of the coeff cients increases
linearly with the number of terms in the series expansion,
there is a signif cant increase in the amount of computation for
time-varying AR as compared with traditional AR. In order to
reduce computational complexity, this paper investigates a TV-
AR model based on orthogonal polynomial functions as the
the base function [11]. Then the estimated cross-correlation
matrix and auto correlation vector used to calculate the time
varying coeff cients are in a much simpler format. Therefore,
the computational complexity is dramatically reduced.

The f nite impulse response (FIR) notch f lter based inter-
ference suppression method [8] [12] is simple to implement
once an IF estimate is determined. However, the notch f lter
distorts the desired signal when it cuts the interference. The
jammer IF can construct the jammer subspace. The respective
orthogonal subspace projection is used to excise the jammer.
It has been demonstrated recently [13] that the subspace
projection method can robustly improve the output signal to
noise ration (SNR) signif cantly. As the jammer subspace is
solely determined by the jammer IF, reliable estimation of the
IF is important for FM interference mitigation.

We then use the time-varying notch f lter and orthogonal
projection to suppress the jammer based on the estimated
IF [14]. Analysis shows that the proposed approach of or-
thogonal polynomial basis vectors in the TV-AR f ltering
signif cantly reduces the computational complexity. Simulation
results demonstrate that the proposed method outperforms
other approaches using regular polynomials. Orthogonal pro-
jection can improve the bit error rate (BER) performance
compared with the time-varying notch f lter approach.
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Fig. 1. Signals (SNR=1dB and JRS=40dB) (a) signal after spreading.
(b) jammer signals. (c) received signal (include spreading signal, noise and
jammer)

2. SIGNAL MODEL

In DS/SS communications, each information symbol is
spread using a length-L spreading code. That is,

d(k) = s(n)c(n, l) with k = nL + l , (1)

where s(n) is the symbol-rate information bearing signal, and
c(n, l) is the binary spreading sequence of the nth symbol. We
use c(n) instead of c(n, l) for simplicity when no confusion
arises. The received chip rate f ltered by a matched f lter and
sampled data sequence can be expressed as the product of the
chip-rate sequence d(k) and its spatial signature h,

p(k) = d(k)h (2)

Within a symbol interval, after chip-rate processing, the
received data become

x = p + e + j (3)

where
p =

[
p1 p2 · · · pL

]T

is an L×1 vector containing signal of interest, the white noise
vector is

e =
[

e1 e2 · · · eL

]T

and the FM jammer vector with length L is

j =
[

j1 j2 · · · jL

]T
.

Each element in the vector is the received signal at time n

x(n) = p(n) + e(n) + j(n) (4)

Figures 1 and 2 show the spreading signal, linear FM jam-
mer and received signal in time domain and their spectrogram.
One can f nd that the received signal is corrupted by the high
level jammer when the jammer to signal ration (JSR) is high.
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Fig. 2. Spectrum gram of signals (SNR=1dB and JSR=40dB)(a) signal after
spreading. (b) jammer signals. (c) received signal (include spreading signal,
noise and jammer)

3. IF ESTIMATION BASED ON TV-AR MODEL

3.1. TV-AR Modeling

In traditional AR modeling, the discrete-time data x(n) is
modeled as a linear combination of its past p samples. That
is:

x(n) = −
P∑

i=1

ai x(n − i) + e(n) (5)

where e(n) is the modeling error/residule.
If the strong jammer contained in x(n) has non-stationary

or time-varying parameters, say an FM jammer, we can use a
TV-AR model [10] to improve the modeling accuracy. In such
a model, the f lter coeff cients, ai’s, are allowed to change with
time. A time-varying autoregressive (TV-AR) process is then
expressed as:

x(n) = −
P∑

i=1

ai(n)x(n − i) + e(n) (6)

where the AR coeff cients are constructed from

ai(n) =

q
∑

k=0

aik uk(n), (7)

where uk(n), (k = 0, 1, · · · q) is a set of independent basis
functions.

To estimate the FM signal, we choose the basis function as
follows: {uk (n) = nk}q

k=0. Other choices of basis functions
leading to reduced computation are under investigation.

Combining (5) and (6), the prediction equation becomes:

x(n) = −
p
∑

i=1

(
q
∑

k=0

aik uk(n)

)

x(n − i) + e(n) (8)

For coeff cient calculation, we use an optimization criterion
of minimizing the total squared error, i.e.,
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E =
∑

n

(

x(n) +

p
∑

i=1

q
∑

k=0

aikuk(n)x(n − i)

)2

Minimizing the above error with respect to each coeff cient
leads to the following set of p(q + 1) equations:

p
∑

i=1

q
∑

k=0

aikckl(i, j) = −c0l(0, j)

0 ≤ j ≤ p, 1 ≤ l ≤ q (9)

where ckl(i, j) is termed as a generalized correlation function,
def ned as,

ckl(i, j) =
∑

n

uk(n)ul(n)x(n − i)x(n − j)

0 ≤ k, l ≤ q (10)

Expressed in a matrix form, equation (9) becomes








C00 C01 · · · C0q

C10 C11 · · · C1q

...
...

. . .
...

Cq0 Cq1 · · · Cqq








︸ ︷︷ ︸

C








a0

a1

...
aq








︸ ︷︷ ︸

a

= −








c0

c1

...
cq








︸ ︷︷ ︸

c

(11)

where

ai =
[

a1i a2i · · · api

]T
, 0 ≤ i ≤ q

ci =
[

c0i(0, 1) c0i(0, 2) · · · c0i(0, p)
]T

0 ≤ i ≤ q

and

Ckl =








ckl(1, 1) ckl(1, 2) · · · ckl(1, p)
ckl(2, 1) ckl(2, 2) · · · ckl(2, p)

...
...

. . .
...

ckl(p, 1) ckl(p, 2) · · · ckl(p, p)








0 ≤ k ≤ q, 0 ≤ l ≤ q

is a block Toeplitz matrix.
The solution for providing the coeff cients needed in (7) is

a = −C−1c (12)

.

3.2. TV-AR Model and Different Base Functions

For the time-varying linear prediction method outlined in
Section 3.1, the predictor coeff cients are obtained by solving
a set of linear equations given by (9). Because the number of
the coeff cients increases linearly with the number of terms
in the series expansion (q + 1), there is a signif cant increase
in the amount of computation for TV-AR as compared with
traditional AR (with q = 0). In TV-AR modeling, each AR
coeff cient is expanded by a set of bases. This section focuses
on the computational aspect based on different base functions.
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3.2.1) Powers of The Time: We can approximate a wide
variety of coeff cient time variations. Powers of time functions
are widely used as the base function in TV-AR modeling

uk(n) = nk (13)

This set of bases is shown in Fig. 3(a)
In our TV-AR model, we use uk(n) = nk, n = 1, 2, . . . , N

and k = 1, 2, . . . , q, where N is the window size and q is the
order of the base functions.

3.2.2) Trigonometric Function: The base function could be
trigonometric functions, as in a Fourier series [10], as shown
in Fig. 3(b)

uk(n) =

{
cos(knω) k=even
sin(knω) k=odd (14)

where ω is a constant dependent upon the length of the
incoming data. In order to estimate the jammer’s IF, in the
TV-AR model

u0(n) = cos(0nω) (15)
u1(n) = sin(1nω)

u2(n) = cos(2nω)

· · ·

where we choose ω = π/N , n = 1, 2, . . . , N , N is window
size.

3.2.3) Chebyshev Orthogonal Polynomial: Using orthog-
onal polynomials instead of the the regular polynomial in
TV-AR coeff cient f tting reduces computation signif cantly. A
set of orthogonal polynomials def ned as the solutions to the
Chebyshev [15] differential equation and denoted Tn(x), can
be found in Fig. 3(c).

The Chebyshev polynomials are orthogonal polynomials
with respect to the weighting function (1 − x2)−1/2

2

π

∫ 1

−1

Tn(x)Tm(x)
dx√

1 − x2
=







0 (n 6= m)
1 (n = m 6= 0)
2 (n = m = 0)

(16)
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For our particular TV-AR model for IF estimation, we use

u0(x) = T0(x) = 1 (17)
u1(x) = T1(x) = x

u2(x) = T2(x) = 2x2 − 1

· · ·

where x = 2n
N −1, n = 1, 2, . . . , N and N is the total number

of data in the window, and x ∈ [−1, 1].
3.2.4) Hermite Orthogonal Polynomial: The Hermite poly-

nomials are set of orthogonal polynomials over the domain
(−∞,∞) with weighting function e−x2

[15], as shown in
Fig. 3(d). They are

Hn(x) = (−1)nex2

[ n

2
]

∑

k=0

(−1)kn!

k!(n − 2k)!
(2x)n−2k (18)

∫ ∞

−∞

Hm(x)Hn(x)e−x2

dx =

{
0 (n 6= m)

2nn!
√

π (n = m)
(19)

In the proposed TV-AR model, we use

u0(x) = H0(x) = 1 (20)
u1(x) = H1(x) = 2x

u2(x) = H2(x) = 4x2 − 2

· · ·

where x = n− 2/N , n = 1, 2, . . . , N , N is the window size,
x ∈ [−∞,∞].

3.3. Calculational Complexity

Since the orthogonal polynomials are orthogonal to each
other, from (12) only the sub matrix on the diagonal of the
big block matrix exists, and the other sub matrix is a zero
matrix. We can reduce the complexity by just calculating the
sub matrix diagonal. The auto correlation matrix C becomes
a block diagonal matrix when we use orthogonal polynomials
as the base.

C =








C00 0 · · · 0

0 C11 · · · 0
...

...
. . .

...
0 0 · · · Cqq








(21)

and the cross correlation matrix c becomes:

c =
[

c0 0 · · · 0
]T

For non orthogonal bases, the computational complexity
for computing the auto correlation matric C is 3(q+1)2

2 p2N

multiplications and (q+1)2

2 p2N additions. The complexity for
calculating the cross correlation vector c is 3p(q + 1)N
multiplications and p(q + 1)N additions.

For orthogonal bases, the complexity for calculating the
auto correlation matrix C is 3(q+1)

2 p2N multiplications and
(q+1)

2 p2N additions. The complexity for calculating the cross
correlation vector c is 3(q+1)N multiplications and (q+1)N
additions, as shown in Table I.

TABLE I
COMPUTING COMPLEXITY FOR COEFFICIENT MATRIX

multiplications additions

non orthogonal base C
3(q+1)2

2
p2N

(q+1)2

2
p2N

non orthogonal basec 3p(q + 1)N p(q + 1)N

orthogonal base C
3(q+1)

2
p2N

(q+1)
2

p2N

orthogonal base c 3(q + 1)N (q + 1)N

In order to get the time-varying coeff cient, we should
calculate the inverse of C.

C−1 =








C−1
00 0 · · · 0

0 C−1
11 · · · 0

...
...

. . .
...

0 0 · · · C−1
qq








Therefore, we change from calculating (q + 1)p × (q + 1)p
matrix inverse into q + 1 small matrix (p × p) inverse.

3.4. IF Estimation

It is well known that in the stationary case narrowband
signals embeded in white noise can be modeled as an AR pro-
cess and we can achieve high-resolution frequency estimation
through such modeling. Similarly, for nonstationary jammer
components, high-resolution IF estimation can be achieved
through a TV-AR modeling approach.

For a complex-valued signal consisting of M FM compo-
nents in white noise, we model the signal with a TV-AR model
with order p = M . The additional modeling parameter q in
(7) is selected according to priori knowledge of the siganl.

From the estimated âik, we can construct the TV-AR
coeff cients âi(n) from (7). And the time-varying transfer
function corresponding to the TV-AR model can be expressed
as

H(z, n) =
1

1 +
∑p

i=1 âi(n)z−i
(22)

By rooting the polynomial formed by TV-AR linear predic-
tion f lter (1+

∑p
i=1 âi(n)z−i) at each instant n, we can get the

time-varying poles: zi(n), i = 1, 2, · · · , p. The instantaneous
angles of certain poles provide estimate of the instantaneous
frequencies f(n):

f(n) =
ang{zi(n)}

2π
for |zi(n)| ≈ 1

Note that zero-padded FFTs can be used to f nd the IFs in
a computationally eff cient way [16].

4. FM JAMMER SUPPRESSION

Once the IFs of the FM jammer signals are estimated, we
can suppress the jammer signals before de-spreading. The
received data are stored in a buffer, and IF is estimated and
used to remove the jammer, as shown in Fig. 4.
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4.1. Subspace Orthogonal Projection

If we treat the DS/SS signal as approximately white, the
received data x(n) can be viewed as FMs in white noise and
modeled with a TV-AR model. We rewrite (4)

x(n) = j(n) + n(n) (23)

where n(n) = e(n) + p(n) is the summation of noise and
spreading signals.

The IF of the FM jammer is estimated by using the approach
outlined in Section 3.

We can obtain the instantaneous phase

φ(t) =

∫ t

−∞

f(τ)dτ

and the discreet instantaneous phase

φ(n) =

n∑

i=−∞

f(i) =

n∑

i=0

f(i) + φ0 (24)

where φ0 is the initial phase.
We represent complex-valued FM jammer mode as:

uT =
1√
L

[
ejφ(1)ejφ(2) · · · ejφ(L)

]

where normalization by
√

L ensures unit energy.
The orthogonal projection matrix is given by [17]

P⊥

u = I− uuH (25)

where the vector u is the unit norm base vector in the direction
of the jammer vector, and the superscripts H denotes vector
or matrix Hermitian [18]. Using the concept of subspace
f ltering, the jammer can be removed through the projection,
as shown in Fig. 5. The projection of the received signal on
the orthogonal subspace of the jammer yields

x⊥ = P⊥

u
x = P⊥

u
p + P⊥

u
e (26)
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Fig. 5. Jammer excision by subspace orthogonal projection

4.2. Subspace Oblique Projection

The signal-of-interest vector p can be written as

p =
[

p(k) p(k − 1) · · · p(k − L + 1)
]T ∆

= s(n)q
(27)

where q is the extension of the DS/SS code by replicating it
with weights def ned by the signal spatial signature.

q =
(

c(L − 1) c(L − 2) · · · c(0)
)T ⊗ h

∆
= c ⊗ h

where ⊗ is the Kronecker product.
After performing the despreading matched f ltering, the

symbol rate decision variable is obtained

y (n) = qHx⊥ = s(n)qHP⊥

u q + qHP⊥

u e
∆
= y1 (n) + y2 (n)

(28)
where y1 (n) is the contribution of the desired DS/SS signal to
the decision variable, and y2 (n) is the respective contribution
from the noise.

The oblique projection [19], instead of the orthogonal sub-
space projection matrix P⊥

u
, employs the following projection

matrix
P2 = q

(
qHP⊥

u
q
)−1

qHP⊥

u
(29)

From (29), since P⊥
u is the orthogonal to the interference,

we can get that P2q = q and P2u = 0.
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Fig. 6. The contour plots of the time-varying linear prediction f lters. (a) FM jammer is linear chirp. (b) The jammer is sinusoidal FM. (c) Two FM jammer
signals are linear chirps. (d) Two FM jammer signals whose IFs are sinusoidal.
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Through oblique projection processing, the output of the
matched f lter is

ỹ(n) = qHP2x = κ (n) y (n) (30)

Therefore, the output of the receiver using oblique projec-
tion is the orthogonal projection scaled by a scalar κ (n).

5. SIMULATION RESULTS

5.1. IF Estimation and Jammer Cancelation

Data containing FM jammer, an additive white Gaussian
noise (AWGN) signal and a DS/SS code division multiple
access (CDMA) signal are synthesized by the model in (3).

Four experiments are performed with synthesized data con-
taining different FM signals: (a) the jammer is a linear chirp,
(b) the jammer is sinusoidal FM, (c) Two jammer signals are
linear chirps, and (d) Two jammers are sinusoidal FMs.

In the experiments, IF is estimated from the data using a
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Linear FM jammer and JSR=40dB)
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Fig. 9. BER vs. SNR for different jammer suppression methods (Number
of jammer=2, L=15, Two linear FM jammer signals and JSR=40dB)

TV-AR modeling approach. Figure 6 shows the contour plots
of the time-varying linear prediction f lter’s coeff cients from
the TV-AR model. It is evident that the IF is embedded in the
structure of the TV-AR coeff cients. Figure 7(a)-(d) show the
real IFs and the estimated IFs using a TV-AR approach under
different FM schemes.

The DS/SS signal uses Gold code of length L=15. The
jammer-to-signal ratio (JSR) is 40dB. We compare the sub-
space projection methods and the time-varying notch f lter
method. Figure 8 shows the BER vs. SNR under one dimen-
sional jammer scheme and Fig. 9 shows the BER vs. SNR
under two dimensional jammer signals (2 FM jammer signals)
scheme. The performance of the projection methods are much
better than the time varying notch f lter approach, especially
with multi-jammer condition. Two kind of projections are
considered. It is evident that both methods provide very
close BER performance. Because the oblique projection is the
orthogonal projection scaled by a scalar, it will not change the
performance of the detection. Hence, it is preferred.

0 1 2 3 4 5 6 7 8 9
0

10

20

30

40

50

60

70

80

90

Order of the bases (q)

N
or

m
ar

liz
ed

 T
im

e

Orthogonal base
Non−orthogonal base

Fig. 10. Computaion time for different of base normarize to q = 0 non-
orthgonal base

5.2. Computational Complexity

Simulation results of the computational complexity are
presented based on the following parameters: the order of
the model p = 4, the window size N = 150, and the order
of the base from 0 (the traditional AR) to 9. In simulation,
we calculate the computational time of the TV-AR coeff cient
estimating process (including computing the cross correlation
vector, auto correlation matrix and its inverse), then we nor-
malize the absolute time with the computation time of the
original AR model using power of time as the base vector.
Fig. 10 depicts the the computation time of different bases.
From the simulation results, the computational complexity
increases with the order q of the base. Using orthogonal
polynomials as the base functions instead of the original bases
can signif cantly reduce the computation amount, especially in
the high base order case.

6. CONCLUSION

TV-AR modeling is an eff cient technique used in non
stationary signal processing. In this paper, in order to reduce
the computational complexity, the orthogonal polynomials are
used as the base function in TV-AR modeling for IF estimation
in DS/SS communication systems. Based on the orthogonal
properties of the base vector, computational complexity of
the cross correlation vector, auto correlation matrix and its
inversion is signif cantly reduced. The simulation results also
show the subspace projection method can provide better per-
formance. The future research will include investigating the
other projection methods and then extending the proposed
method to multiple antenna scenarios.
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