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Task-Adaptive Information Distribution for
Dynamic Collaborative Emergency Response
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Abstract— For emergency responders in crisis situations it is
essential that they timely acquire all information critical to their
task performance. Lack of adequate information hampers the
decision-making process, the workflow as well as situational
awareness, which consequently strongly influences a successful
solution of the crisis. Studies have shown that in practice errors
occur in accessing and sharing relevant information between col-
laborating individuals or organizations, leading to unnecessary,
preventable errors and delays, that can cause more damage to
the situation.

This paper presents the Task-Adaptive Information Distri-
bution (TAID) method. It consists of a system for adaptive
information distribution that distributes relevant infor mation
to collaborating emergency responders and of an adaptive
(simulated) workflow system (AWS) used to obtain knowledge
of tasks and work processes. The system is trained on data
from previous crisis management processes, using tools from
Machine Learning. Results of experiments with data from a
real incident indicate that this approach is promising. Using
task knowledge significantly increases the quality of distributing
relevant information so making collaborative response work
much more effective.

Index Terms— Collaborative emergency response, adaptive
information distribution, workflow simulation, machine le arning.

1. INTRODUCTION

EMERGENCY responders involved in a relatively con-
fined emergency response operation can almost imme-

diately share relevant information with each other and other
emergency services. Given the frequency of such minor events,
the emergency response actors know what to do, based on
extensive shared experience and training, and know who
requires what kind of information. However, in case of a
large incident, the situation becomes completely different.
Besides the initial emergency services (fire department, police
and medical services) other agencies become involved (for
example, the municipality and national government), who
all actively collect and share information. This increasesthe
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amount of information rapidly and complicates task-relevant
information sharing between those involved.

The proliferation of information causes a problem for the
specialized emergency response actor who only requires part
of this information for his/her task. Especially, when large
teams or organizations are put together on the fly it becomes
complex for the actors involved to adequately decide for
whom information is relevant, or to whom information should
be sent. Hence, information distribution errors may occur.
Information overloadoccurs when messages are continuously
sent to actors that do not need these messages [15]. On the
other sideinformation starvation(i.e. ‘information scarcity’)
occurs when messages are not sent to actors who do need
these messages. Information overload causes an overwhelming
amount of information to be processed. Information starvation
on the other side may cause incomplete information resulting
in wrong decisions made and have a negative influence on the
task performance.

In emergency response situations the sharing of information
is for a large part done through a centralist who, as the term
“centralist” already reveals, is the ’central point’ within a
particular emergency service that channels the information to
the emergency responders. In larger crises involving more cen-
tralists or more levels in the organization, relevant information
often does not reach the actors that could have used it, see for
example [6], [14].

Recent large training exercises on crisis response and ma-
nagement situations in the Netherlands showed that communi-
cation and information sharing was worse than expected [1],
[8]. Many evaluation studies on response and management
operations during disaster situations also indicated thaterrors
in the distribution of crucial information between collaborating
actors is often neglected which has had a significant influence
on a successful solution of those situations [3], [6], [16].
Considered to be the main problems with regard to information
are: 1) not having complete information: availability and
accessibility of correct and full information for an effective
execution of tasks and decision-making; 2) not sharing of the
information between involved parties [8], [22].

The mitigation of a crisis situation is for a large part
determined by the information that is available in an early
stage of the unfolding of a large crisis. The correctness of
this information is therefore very important. There are several
examples where errors in the distribution of information be-
tween emergency response actors caused more damage. For
example, in the Mont Blanc vehicle tunnel disaster on the
border of Italy and France, there was a scarcity of up-to-date
information which played a large role in finding a solution
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to the disaster situation [7]. The emergency services were not
able to get a picture of the number of cars in the tunnel and
what type these vehicles were, making the severity difficultto
asses. Based on this information the authorities on one sideof
the tunnel decided not to scale up the emergency support. If
this had been done, then the fire most likely would have been
under control much faster.

The Hercules plane crash in Eindhoven, the Netherlands,
showed that a small mistake in the information can have severe
consequences [14]. In this case, assumptions were made by the
fire brigade of the municipality about the capacity of the air-
port fire brigade and the amount of people on the plane. These
assumptions, unfortunately, were incorrect, but determined the
nature of the support provided by the municipality. Incomplete
information is normally filled in by the emergency responders
by means of estimates and conjectures under conditions of
uncertainty. In case of the Hercules disaster the on-scene
commander stated afterwards that he heard that the number
of people in the plane was unknown. However, the number
of people onboard the plane had been discussed earlier by
the airport centralist and the head traffic controller. Thiscould
have been distributed to the on-scene commander providing
him with better information.

In the dynamic situation, new information is continuously
created, therefore a standard query-return model of informa-
tion retrieval will not suffice: team members cannot continu-
ously query a database for information they need, especially
if they do not know that the information exists. Also, systems
that filter and distribute information based on user-supplied
(static) profiles or long-standing queries are also inadequate.
To deal with these issues, a system managing the information
distribution must be able to adapt information to the actor’s
task, moreover must be able to adapt when actors change
roles, take on new tasks, and abandon old tasks, similar to
human adaptation to and perception of information relevance
in dynamic environments [11].

Roles of emergency response actors play a key part in any
group communication and should be part of the key func-
tionality in the design of information systems for emergency
management [23]. Additionally, we argue that such a system
must be aware of the work context of those actors. Knowledge
about the task is crucial for delivering the right information
at the right time [4] to the right person. Having accurate task
knowledge of other collaborators within the team improves
the distribution of information and thereby the entire team
performance [20].

Tasks can be modeled using a role-task framework. In this
framework, roles of actors are identified and a set of tasks is
associated to each role. A rigid workflow that only represents
the tasks that should be done, only represents part of the work
that actually is done. Work practice often deviates from this
plan. This is difficult to model in advance. By restructuringand
combining parts from different workflows that are described
in action plans, a new workflow can be created on the fly. A
flexible (i.e. adaptive) workflow system [9] would be able to
predict the new task that needs to be executed for a specific sit-
uation. However, the dynamically changing environment with
interrupts, role changes and parallelism makes this a complex

issue. Therefore, such a workflow system must continually
revise its model based on the current state of the world in
order to model what is happening. Acquisition and distribution
of information must be based on this adaptive model.

In this paper a prototype system, called Task-Adaptive
Information Distributor (TAID), as proposed previously [21],
is used to conduct experiments on data from a real incident
scenario. This available data from detailed evaluation reports
on the Koningkerk (“King’s church”) fire disaster in the cityof
Haarlem, the Netherlands, was selected. In particular, we in-
vestigate if machine learning techniques can learn to select and
disseminate task-relevant information from speech utterance
transcriptions of collaborating emergency responders. Further-
more, to assess if the addition of task information providedby
an adaptive (simulated) workflow model adds to the quality
of the information distribution. Results of the experiments
conducted on data, indicate that including task knowledge to
the learner increases performance significantly and that using
machine learning methods for this purpose is promising. In
practice, this could mean a more accurate delivery of relevant
information, making collaborative response work much more
effective.

The remainder of the paper is organized as follows. Section
2 presents the system design approach. Section 3 describes the
simulation of adaptive workflows. In Section 4 the adaptive
information distributor is described. Following this in Section
5, results of experiments on a test corpus from a real disaster
scenario are described. The paper ends with a discussion in
Section 6 and conclusions in Section 7.

2. SYSTEM DESIGN

The proposed system for Task-Adaptive Information Distri-
bution (TAID) is presented here. Figure 1 presents an overview
of the overall architecture. Within the dashed box resides the
adaptive information distributor system. A separate system,
the adaptive (simulated) workflow system (AWS) is coupled
to the first component of the information distributor.

Fig. 1. System Overview

The AWS provides additional context (i.e. information about
the current state of the world) to the information distribu-
tor. The information distributor consist of three components
that process the incoming information. First, the incoming
information messages are pre-processed. In this stage the
relevant features for learning are selected. Second, in the
initial off-line phase of the system we train it to select and
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distribute relevant parts of information by means of labeled
examples. An expert is able to label message examples with
semantic class labels (e.g. actor roles). Then, in the on-line
stage it determines (classification task) the relevance of the
incoming message based on what it has learned. Third, it
disseminates the information towards the actors for whom
the information is classified as relevant. Thus, pushing the
information automatically to them.

Although, the information distribution system is able to
learn which information is important for which actor it also
has to adapt to the changing information needs and to the
representation of their information needs. Acquiring informa-
tion about the actual fast-changing information needs of the
actors enables TAID system to select and distribute relevant
information more precise. For example, explicit information of
someone’s location makes assessing the relevance of particular
information for this actor much easier. Descriptions of the
tasks/activities of actors, as can for example be found in plans
and training materials, also contain information about what is
important for that actor at that moment. This dynamic task
information can then be extracted from an adaptive workflow
system. Such a workflow system tracks tasks of actors. This
way the AWS provides task descriptions; the task that the
actor is performing at that moment. This enables the informa-
tion distribution system to distribute relevant information in
accordance with the actor’s current information needs.

3. ADAPTIVE WORKFLOW SIMULATION

For capturing the dynamics of the workflow of emergency
responders and predicting the task at hand by conducting
work simulation, exception handling and flexibility are key
concepts. A rigid workflow representing the tasks that should
be done only has power to represent part of the work that
actually is done during mitigation. These textbook reactions,
mostly documented in protocols (predefined plans of attack)
and emergency plans, possess a fine level of granularity of
workflows but work practice often deviates. Emergency re-
sponders react to the situation at hand, changing the workflow
due to new information provided to them in the form of
situational cues or as a result of communication. By doing this,
they restructure and combine parts from different workflows
that are described in action plans, creating a new workflow on
the fly. To achieve this level of flexibility in a workflow system,
the unit level of work should not be the complete, prescribed,
rigid workflow, but the duty and task level [17] extended with
information about the “likely next task” (depending on the
active plan) and dependency on resources, locations, and other
tasks.

“A duty is a large segment of the work done by one
individual, often a major subdivision of the work content of
his or her job. A duty is usually recognized as being one of the
employee’s principal job responsibilities. A task is a unitof
work activity which forms a significant and a consistent part
of a duty. Tasks are not homogenous units of behavior; they
are logically differentiated segments of work activity” [17].

The “likely next task” variable provides us with information
about the task that normally succeeds the present task, based

on the active protocol. Without special events, the active work
protocol is fully carried out. However, in the case of situational
changes the “likely next task” variable changes to the task that
has the highest probability to be carried out within the newly
active, actual situation based, protocol.

Incorporating the level of adaptivity of work practice of
emergency responders into traditional workflow and simulation
systems goes beyond the abilities of most systems used for
adaptive workflow modeling [10]. Furthermore the level of
detail of aspects that influence the workflow, such as com-
munication, events, and the recent situation, are essential for
the way work actually gets done, and changes as work gets
done. Therefore, work practice simulation, which includes
workflow and situational influences on work using the Brahms
modeling and simulation tool was performed. Brahms has
been developed to support the design of work by highlighting
not the formal elements of how work should be done, but
by focusing on how work actually is done [19]. Brahms
can be described as: “...a multi agent simulation tool for
modeling the activities of groups in different locations and the
physical environment. A Brahms model reveals circumstantial,
interactional influences on how work actually gets done,
especially how people involve each other in their work” [5].
Brahms models can help human-computer system designers to
understand how tasks and information actually flow between
people and machines.

Fig. 2. Hierarchical template of fire-fighter organization /agents

The object-oriented approach Brahms uses, enables us to
create a general template at a high abstraction level in the hi-
erarchy of emergency response work practice, which branches
into increasing levels of specificity of the elements. This
template consists of those elements in emergency response
that reoccur in emergency situations, such as duties and tasks,
agents, objects and conceptual objects.
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Figure 2 illustrates this for the Dutch crisis organization.
The disaster base group, which is the most general level,
contains multiple groups of agents involved in the emergency
response whose activities and responsibilities differ signifi-
cantly. The aspects defined at the highest level include basic
life activities such as breathing, and general characteristics
such as the ability to get wounded. These are inherited by all
members. All aspects (for example, the ability to do certain
tasks or have certain characteristics), defined at the group
level affect the groups and agents it branches into. In Figure
2, within each group (dispatchers, fire department, police,
paramedics, others), subgroups are formed based on roles and
task similarity, becoming more specific at lower levels. Thefire
department for example, consists of several levels of command
(commander, officer on duty, head officer on duty, commander
disaster area) and the firefighters. Within the firefighter role
three more subdivision can be made; attack squad, water squad
and the driver / pump operator. General disaster response
tasks are therefore pre-specified high in the work hierarchy,
and instantiated the lower levels, making the model easily
applicable to completely different disaster situations.

The Brahms simulation engine dynamically simulates dis-
aster response based on the information state of emergency
responders. The absence or presence of information will
influence the workflow and initiates all agent activities. In
Figure 3 an example of a workflow diagram is shown (which
is the visual representation of the workflow that resulted from
the simulation).

In Figure 3, the agents’ workflows are separated by a dashed
line and they are divided into three parts. The first horizon-
tal bar (dark grey) represents the agent’s location (verkeer-
storen, PrinsesIreneKazerne and OnderwegNaarEindbestem-
ming). In Figure 3 this location changes for the bottom agent
from “PrinsesIreneKazerne” to “OnderwegNaarEindbestem-
ming” indicating that the bottom agent moved to a different
location. In other words, moving from the barracks to being
enroute to the incident location. The second horizontal bar
(black) represents a time scale, which stands for the simulated
date and time, which provides information about the duration
of activities. The third bar (light grey) represents the activities
initiated by the agent. These activities can be single activities
(pa: primitive activity or cw: communication activity) as well
as composite activities (ca:) and change dynamically according
to the information provided to the agent. The communication
from and to the agent is illustrated with the vertical lines.

The simulation output provides information about the actors
to the distributor component of the TAID system.

4. INFORMATION DISTRIBUTION

Adaptive information distribution is the process of determin-
ing the relevance of information and adaptively distributethis
information to the emergency response actors for whom it is
relevant, using additional domain knowledge about the actor’s
activity to better determine the relevance. Here, we describe
our machine learning approach in order to select and distribute
relevant information to the emergency response actors.

4.1. Pre-processing

The vast amount of information that we have to deal with
in this domain is in natural language (i.e. unstructured). Pre-
processing text in natural language is necessary to make it use-
able for the machine learning algorithm. In the pre-processing
phase feature extraction and selection is an important factor
that also affects a classifiers’ performance. In other words, a
successful classification application relies on the right model
and the right features. The most common used feature set
for text classification are word tokens. This ‘Bag-of-Words’
text representation model does not take into account the word
context.

To increase effectiveness of the predictions made by a
classifier the words (i.e. features) that are are irrelevantto the
prediction should be removed. A common approach, which
we adopted is remove the stop words. Stop words or also
sometimes called function words (for example “the” and “a”)
have an important role in grammar but carry little meaning,
and therefore do not contribute much to the classification task.

The texts we use for classification are different than the
standard texts. In the domain of emergency response and ma-
nagement much of the information is distributed by means of
speech. Transcriptions of these speech utterances are different
from for example news articles. Context features of the actor
and the situation are necessary to obtain effective classification
results.

In crisis situations there is a plan of attack (i.e. workflow).
Tasks are assigned to actors, for example through the adaptive
(simulated) workflow system (as described in Section 3). Task
descriptions contain information about what is relevant for the
actor at that moment. When the plan of attack is adapted, we
can keep track of changes in the actor’s information needs
by tracking the actor’s tasks. In other words, when an actor
changes from task then also his information needs change
which is represented by means the new task description.
These task descriptions are written in natural language andare
represented in the same manner as the content of the utterance
transcriptions; the ‘Bag-of-Words’ model. Subsequently,this
task knowledge is incorporated into the learning process by
coupling the task (word) features to the utterance content
features of each incoming training example. The resulting
words (and their frequencies) are subsequently given as input
to the classifier.

4.2. Learning Method

Assessing the relevance of new information requires some
degree of understanding of the meaning of the information.
A growing body of research in the Artificial Intelligence (AI)
community addresses the problem of learning to classify text
documents and of detecting topics of documents [18]. A stan-
dard machine learning approach to learn which information is
relevant for which actor in a particular situation is to use text
classification. Text Classification is the task of automatically
assigning semantic categories to natural language text. Inour
case we assign actor roles as labels to the training example
messages.
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Fig. 3. Timeline view

The communication flows of messages communicated be-
tween collaborating emergency actors are often relevant for
multiple actors which have different roles. Therefore, the
learning task of our system is a multi-label classification
problem, i.e. a training example can have multiple labels (for
example, roles) assigned to it. In this case the classifier has
to learn multiple (for example, overlapping) target classes. In
Figure 1 we indicated the class labels by(A1, A2...AN ), which
can be coupled to the same message. A naı̈ve approach to a
multi-label classification problem is to transform it into ak-
binary classification problem [18]. This means that for each
class a binary classifier is created that learns which information
is relevant or non-relevant.

Naive Bayes is a commonly used and effective text clas-
sification algorithm [13]. There are two variations. In the
multivariate Bernoulli model, given a training document set
D with vocabulary V = w1, w2, ..., wm, a document is
represented as a ”binary” word feature vector with length
m : d = (w1, w2, ..., wm). Each word featurewj is ’1’
if the word occurs in the document, and ’0’ if it does
not occur. This model does not take into account the word
frequencies and document length, which are potentially useful
information when determining the class of a text document.
A test documents’ class posterior is calculated by multiplying
the probabilities of all the feature values, including the word
features that do not occur in the document.

In the multinomial model, given a training document set
D with vocabularyV = w1, w2, ..., wm, a document is also
represented as a word feature vector with lengthm : d =
(w1, w2, ..., wm). But the value of each featurewj is its
frequency in the document. In this case a test documents class
posterior is calculated by multiplying the probabilities of all
the words that occur. In this model the trained classifier should
remain the same if we scramble the words in a document and

concatenate all the document examples in each class into one
single example. In this sense, the size of each document does
not affect the classifier.

Transcriptions of utterances can vary widely in length.
The multinomial event model naturally handles documents of
varying length by incorporating the evidence of each appearing
word [12]. This approach is more traditional in statistical
language modeling for speech recognition, where it would be
called a uni-gram language model. This multinomial model
best fits our task of classification and is is adopted as the
learning algorithm variant of the probabilistic classifier.

The actual training process of the system takes place in an
off-line training setting, which will be discussed in the next
section.

4.3. Training the System

The information distributor system requires an off-line train-
ing phase in order to teach it the relevance or irrelevance of
certain information for some actor in a particular situation. To
train the system correctly, data form real-life crisis response
(training) operations are necessary. This data can be acquired
by recording speech message traffic during an emergency
response situation. A partly reconstruction of the scenario is
also necessary to know what happened. Another option is to
simulate different emergency response scenarios. The Brahms
tool (see section 3) is able to simulate different courses of
an emergency response scenarios. Data generated from these
simulations can also be used for training the distributor system.
From these simulations we log the communicated information
as well as the actor’s task descriptions and location at that
moment.

Figure 4 shows a part of the log file used in our current
version of the system. This large table consists of the following
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attributes: sender, speech utterances (i.e message), worktask
description addressee and addressee location at that moment.
The utterances vary in length and range between very short
ones of two or three words to a sentence or two. Task
descriptions are short mostly general descriptions about the
actor’s task (one or two sentences). Location information is in
the form of a brief description. A large majority of these rows
has to be labeled with one or possibly multiple appropriate
actor roles for which this message is relevant in that specific
situation.

Fig. 4. Log file

Representatives of emergency response teams or domain
experts are able to teach/train the system by analyzing the
flows of information from those (simulated) scenarios and
label the information with the actor role. By labeling the
information with actor roles for whom the information is
relevant, they teach the system which information is relevant
for a particular actor role in a specific situation.

After the off-line training period the distributor system
is able to classify new unseen information, combined with
task descriptions acquired from the adaptive workflow system
and location information, and assess the relevance of the
information for the involved actors.

5. EXPERIMENTS

This section presents experiments conducted on the data
selected from the Koningskerk disaster scenario. The purpose
of the experiments is to find out if machine learning techniques
are useful for assessing the relevance of information in an
emergency response setting.

The NaiveBayes multinomial classification experiments
were done using the WEKA software package [24] as an
integrated part of the Task-Adaptive Information Distributor.

5.1. Setup

The baseline experiment (Condition A) uses only the ut-
terance transcriptions for classification. Subsequently,we add
additional attributes to the classification task: the name of
the sender (Condition B), task descriptions (Condition C) and
location information (Condition D) and compared the results.

5.2. Data

In the evening of the 23rd of March 2003 a fire broke out in
the Koningskerk near the city center of Haarlem in the Nether-
lands. What would have been a standard operation for the

emergency responders, ended catastrophically with the death
of three firemen. This disaster led to a thorough investigation
of the actions of the involved emergency responders to clarify
what went wrong. The reconstruction of what happened,
showed that mistakes were made in the communication of
information between some emergency responders [16]. Several
firemen lacked crucial information causing them to perform
unnecessary dangerous actions.

The detailed reports on this disaster provided a minute-to-
minute reconstruction of all most all the actions and com-
munications of involved emergency response actors. Much
of the information disseminated between actors during such
situations is done by speech. Some voice recordings of dialogs
with the control room operator were available as well as
written conversations. The majority of the selected messages
are, not surprisingly, communications between firemen. For
our data we focused on selecting dialogue utterances of several
emergency response actors and transcribing them. In addition,
information about their tasks/activities were manually selected
from evaluation reports and a scenario simulation. In totalwe
selected 110 utterance transcriptions combined with additional
descriptions of the actors work context.

5.3. Emergency Responders

At the Koningkerk a relative large number of emergency
responders were involved. To perform our experiments we
selected those actors for which a reasonable amount of data
was present in the reports.

Fig. 5. Organization and communication at Koningkerk disaster

The list below describes the meaning of our abbreviations
of the different actor roles we used for our data collection.

• MBA: Firebrigade and ambulance centralist
• PM: Police centralist
• P: Police officer
• BvD: Team commander of firetruck
• F: Firefighter
• CvD: Chief of Police
• OvD: Officer on Duty

Figure 5 represents a concise version of the organization and
communication lines between actors that were present at the
Koningskerk disaster. In practice, it is common for emergency
personnel to broadcast information to a group of actors.
Therefore, we choose to group several actors. For example,
the commander of a fire truck communicates the information
to his team members and is the contact person with other
emergency response actors outside the team. In the disaster



244 NETTENet al.: TASK-ADAPTIVE INFORMATION DISTRIBUTION FOR DYNAMIC COLLABORATIVE EMERGENCY RESPONSE

scenario multiple vehicles of the firebrigade were involved
due to scaling-up the support of the emergency situation. The
dashed box (TAS) describes one such unit of five firemen and
one team commander. Multiple of these teams and vehicles
were present at the scene. The same is the case for the police
(CvD1 andCvD2). Some units have similar kind of roles in
the emergency situation but can have different locations and
tasks. Therefore, they are treated as separate roles.

5.4. Workflow Information

Descriptions of tasks of the actors involved in the
Koningskerk have been manually selected from standard
emergency personnel reports [16], information from the fire
department website of Haarlem and activity descriptions
selected from the Koningskerk fire disaster scenario.

For example descriptions of tasks of a fire commander are:
• contact the control room to obtain more information about

the emergency situation
• evaluate the situation and determine if sufficient material

is present to mitigate the situation
• evaluate the current safety situation for the public and

determine best plan of attack
• explore the building and search for victims

5.5. Location Information

An emergency responder in the field can carry a digital
communication device that would be able to provide the
precise location of that individual. A Global Positioning Sys-
tem (GPS) is then able to determine the location of a crisis
actor at the incident. Information about someone’s location
is useful for assessing the relevance of certain information.
GPS information was not recorded for the available for the
Koningkerk fire incident and therefore we choose to select
location descriptions of those actors at the incident location
(for example, front side of the church) from the simulation.

5.6. Evaluation Methodology

To evaluate the learning method in this setting we analyzed
precision, recall and used theF1-measure. Precision and recall
are calculated from the contingency table of the classification
(prediction versus manual classification). Recall is defined here
as the number of correctly classified messages (utterance tran-
scriptions) divided by the number of messages belonging to the
class. Precision is defined as the number of correctly classified
messages divided by the number of messages classified to
belong to the class.

In our case, high precision is important since the number of
irrelevant messages classified as relevant should be minimized.
On the other hand, high recall is also important because actors
can not miss too many relevant messages. Therefore, theF1-
measure, a weighted combination of the recall and precision
measures is the performance criterion for the message delivery
success of our system. The validation method of 10-fold cross-
validation was used for constructing training and test setsof
our relatively small data set. Finally, the statistical significance
of the results are tested with a T-test on theF1-measures.

5.7. Results

In our baseline experiment (condition A) we use only the
content of the speech utterance for learning. This means the
learned model classifies new information based only on knowl-
edge acquired during the training phase from the message
content. Table I presents the scores on precision, recall and
F1 of our baseline experiment. The scores show that precision
is high but recall is low. High precision in this case has
to do with the small number of messages being classified
as relevant, and the ones that are predicted as relevant, are
classified correctly. The results of the officer on duty (OvD)
are zero since the model was not able to predict a test instance
as being relevant for the OvD role. Although the results are
certainly not optimal, they are promising, considering that only
the content of the messages is used.

Class/Role Precision Recall F score
MBA: 0.72 0.5 0.59
PM: 0.167 0.067 0.095
BV1: 0.6 0.188 0.286
BV2: 1 0.333 0.5
BV3: 1 0.2 0.333
OvD: 0 0 0

TABLE I

CONDITION A: ONLY UTTERANCES

The second experiment (Condition B) focuses on using the
name of the sender as an additional feature during classifica-
tion process. The name of the sender is an interesting factorin
this domain since a lot of communication follows fixed paths
of communication. In some cases knowing the name of the
sender will improve predictions of information for whom it is
relevant. Table II presents the results.

Class/Role Precision Recall F score
MBA: 0.966 0.8 0.875
PM: 0.429 0.4 0.414
BV1: 0.133 0.118 0.125
BV2: 0.182 0.308 0.229
BV3: 0.034 0.091 0.05
OvD: 0 0 0

TABLE II

CONDITION B: UTTERANCE + SENDER NAME

The third experiment (Condition C) includes the name of the
sender as feature as well as the Bag-of-Words representation
of the task descriptions of the addressee.

Class/Role Precision Recall F score
MBA: 0.941 0.889 0.914
PM: 0.813 0.867 0.839
BV1: 0.611 0.688 0.647
BV2: 1 0.583 0.737
BV3: 1 0.3 0.462
OvD: 1 0.6 0.75

TABLE III

CONDITION C: UTTERANCE + SENDER NAME+ TASK ADDRESSEE

The overall results (see Table III) of the third experiment
are much more promising as indicated by the much higherF1-
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scores (due to much higher precision and recall). The binary
classifier of the the control room operator (MBA) for which
we have the most (relevant) labeled messages, scores overall
high. We observe that adding task descriptions improves the
ability of the classifier to better recognize (recall) and predict
(precision) the relevance of the messages.

Class/Role Precision Recall F score
MBA: 0.921 0.899 0.929
PM: 0.813 0.867 0.839
BV1: 0.628 0.698 0.660
BV2: 1 0.583 0.737
BV3: 1 0.3 0.475
OvD: 1 0.6 0.75

TABLE IV

CONDITION D: UTTERANCE + SENDER+ TASK DESCRIPTIONS+

LOCATION DESCRIPTION

Table IV presents the results for additional location infor-
mation (Condition D). Including the addressees location asa
feature increases the performance of the classier a bit more.

Fig. 6. Comparison of results

Figure 6 shows the bar diagram of all theF1-score results
for all actors in the different test conditions. The results
show that setting C (additional task description of addressee)
increases the performance of the classifier to predict the correct
role class for an unseen piece of information is significantly
higher.

Each experiment has been run ten times for each role
in both conditions, selecting theF1-scores and performing
the T-test (α = 0.05) on those samples. The mean of the
F1-score samples of the MBA, for example, are 0.5863 with a
standard deviation of 0.0464 in condition A and 0.896 with a
standard deviation of 0.0106 in condition C. For each role we
calculated the t-statistic and the p-value. In all cases we got p
< 0.05 indicating that theF1 results are significantly different.

6. TAID SCENARIO EXAMPLE

The TAID system uses task descriptions, sender name and
location information to predict the relevance of the informa-
tion. In order to observe the effects of such a system for
collaborative emergency response we replay a part of the Kon-
ingskerk scenario. In addition, adaptive workflow simulation

integrated in TAID enables the anticipation of information
needs of actors.

6.1. Scenario scene

The commander (BV1) of the first dispatched vehicle arrives
at the front side of the church. Immediately, after arrival
the commander starts assessing the situation and observes
a small fire inside the church. The commander decides to
scale-up the emergency. Subsequently, he gives two of his
men the assignment to go into the church and investigate
it. Meanwhile, a police chief who just arrived at the scene
(CvD1) and two policemen start exploring the built-in living
of the Verger, which is located at the rear end of the church.
They explore the Verger living, but do not encounter anybody.
The police chief reports his findings to the police control room.
He says: “The Verger residence is explored and nobody has
been encountered. We hear the fire and also smell it”. The
police control room (PM) forwards this information to the fire
and ambulance control room operators (MBA).

The commanderBV1 gives two of his men the assignment
to enter and explore the Verger residence at the rear end of
the church. Meanwhile, at the other side of the church the
second fire truck commander (BV2) arrives with his team.
This commander assigns two of his men to arrange a water
supply and starts walking to the Verger residence to explore
it. At the same time the two firemen of the first team arrive at
the rear side of the church. Both teams encounter the Verger
at the entrance of the residence who says that nobody is left in
the house. The second commander (BV2) communicates this
to the first commander (BV1) saying: “There is nobody in the
Verger residence or in the church”. Only at this pointBV1

knows about this but the information had been available much
earlier.

Figure 7a illustrates a part of the information flow at the
moment the police chief (CvD1) reports that the Verger
residence has been checked and nobody was encountered.
At the same time the first commander’s (BV1) task is to
assess the incident environment and check if any people or
animals are still inside the burning building. The information
about the police having checked the house of the Verger is
relevant for him. However, the commander does not receive
this information and assigns two of his men to investigate the
Verger residence.

When re-playing this scene of the scenario using the TAID
system, the system recognizes that the information “The
Verger residence is explored and nobody has been encoun-
tered. We hear the fire and also smell it” uttered by the police
chief (CvD1) is relevant for the first commander (BV1). The
TAID system takes immediate action and forwards (cc’s) this
message to the team commander (BV1) as well as the control
room, which is represented in Figure 7b. In the new situation
BV1 receives the information at the moment it matters thanks
to the distribution of the TAID system which recognized that
this message is relevant for that actor at that moment.

Integration of the Adaptive Workflow Simulation (AWS)
system with the information distributor provides the ability
to anticipate the relevance of information for the possible
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(a) Old situation

(b) New situation

Fig. 7. Improving practice with TAID

next task of an actor. The workflow simulation has to know
where actors are located and what they are doing (for example,
acquired through actor feedback communication to the control
room operator). The AWS uses this information to infer
what the actor would possibly do next using plan/protocol
information. This way, information relevant for the next task
can be delivered to an actor. In this case the task of the
simulation is to foresee (anticipate) what will happen next.
Unfortunately, the simulation is not able to foresee where
actors will go to for there next task.

In the Koningskerk disaster scenario there is the moment
where the first commander (BV1) is evaluating the situation
at the church. Concurrently, the police has just checked the
residence of the Verger and communicate this to the police
control room. The AWS foresees that the next possible task
from the workflow of the commander is to investigate if there
are people trapped in the church or built-in residence. The
information distributor acquires this possible next task of the
commander together with the police information about the
Verger residence and assesses that this is relevant for him.
This information is then distributed to the commander. The
commander sees in advance that it is not necessary to explore
the Verger residence and can assign his men to other tasks.

7. DISCUSSION

The Adaptive Workflow System determines the most prob-
able next task based on the current location and activity of
the actors. Unfortunately, it is not possible for the Brahms
simulation to foresee where the actors will go at their next

subtask. Proactive information sharing is becoming an impor-
tant issue for decision support systems [25]. These systems
focus on using intelligent agents that anticipate the information
needs of teammates proactively. Another option to improve the
distribution of information might be to use implicit knowledge.
For example, actors that have as a task to distribute information
to others (for example, control room operator), the distribution
system can keep track of what kind of information people have
received and which task they performed.

The centralist (i.e. control room operator) has a good task
awareness when dealing with his own organization, but when a
large disaster involves a situation with multiple organizations,
the centralists’ insight in the detailed information needsof
those others is limited. The consequence is that the information
distribution and search for new information will suffer. In
this case support of an information distribution system is an
advantage and will help in getting the right information to the
right people.

Disseminating information to emergency response actors in
the field for whom the message is believed to be relevant
can lead to additional problems regarding the presentationof
the information. How should the selected relevant information
from human dialogs be conveyed to the selected receiver(s)
so that it is directly understandable. Furthermore, what are
the device constraints applicable to represent the information?
Actors in the field might be using different kind of devices
on which this information must be represented (for example,
head-mounted displays, handheld devices or audio devices).
However, these problems are currently outside the scope of
our research.

Currently, we focus mainly on textual information but
information in another format, like for example images, could
also be used by the information distribution system [2]. Based
on features extracted from an image taken at the incident scene
it could also be classified to collaborating team members for
whom it is relevant. The decision process is then not only
supported by language but also visually.

A next step will be to investigate if the TAID method will be
able to generalize over multiple emergency response incidents.
Are we able to repeat these results when we have more
data from different emergency situations? With the Brahms
environment we have the ability to simulate different courses
of disaster scenarios. Data generated from these simulations
is subsequently used for training of the distributor system.
Based on this the distributor is able to improve it distribution
model. Furthermore, event courses generated from disaster
simulations can also be tested using different protocols in
order to debug possible conflicting protocols and plans. By
doing this it can potentially identify possible pitfalls indisaster
management.

8. CONCLUSION

This paper addressed the frequent problem of informa-
tion distribution between collaborating emergency response
actors in large and highly dynamic emergency situations.
As a method to mitigate this problem, we presented our
TAID method, consisting of a system for adaptive information
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distribution system that distributes relevant information to
collaborating emergency responders using task knowledge
from an Adaptive (simulated) Workflow System (AWS).

Results of our experiments on data from a real incident
indicate that adopting Machine Learning methods for this
purpose are promising. Furthermore, adding task information
to the distribution process increases the preciseness of the
distribution significantly. It is hypothesized that using this
task information to distribute information, provides the best
solution in supporting the high degree of adaptivity necessary
to meet the fast-changing information needs of the collab-
orating emergency responders. Finally, replaying a scenario
from practice shows that the TAID system can make group
communication more effective.

ACKNOWLEDGMENT

The authors would like to thank the comments provided by
the reviewers, which helped to improve this paper significantly.

REFERENCES
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