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Abstract - This paper proposes a model reference tracking based 

adaptive PID controller with adaptive mechanisms in both 
feedforward and feedback paths. The objective is to force the outputs 
of a not explicitly known multiple input multiple output (MIMO) 
linear time-invariant system to track the outputs of a known reference 
model. A PID controller is inserted to the feedback path. The 
parameters of the PID controller are computed adaptively by 
eliminating output tracking errors. This approach allows us to 
manipulate the multiple motions of a complicated, unstable, or high-
order robot by operating on a simpler, stable, or lower-order known 
reference model. The mathematic description of the robot is not 
required. Output matching and tracking conditions are derived and 
analyzed. 

 
Index Terms – model reference adaptive control, PID control, 

output feedback, output tracking, MIMO systems. 
 
 

1. INTRODUCTION 
 

Robust robot motion control of not explicitly known 
systems is a challenging subject in both military and 
commercial applications such as unmanned aerial vehicles 
(UAVs), bomb disposal mechanics, remotely-operated 
weapons, and satellites where the faithful mathematic 
description of robots is not available. Recently, many 
adaptive PID methods have been developed [1-12] 
including Back-Stepping (BS) based adaptive proportional-
integral-derivative controller (PID) control which adds the 
integral action and nonlinear damping term to the basic 
back-stepping algorithm to guarantee robustness and 
bounded errors [1, 2], Generalized Predictive Control (GPC) 
based one that uses a PID controller to be equivalent to a 
GPC controller and incorporates the advantages of both PID 
and GPC [3], Heuristic Rule (HR) based one that employs 
rule-based switching and adaptive PID controller to perform 
autonomous functions [6], and many neural network based 
PID controllers used in various applications [7-9]. Robot 
motion control based on adaptive PID control has also been 
studied by applying an adaptive PID feedback control 
schemes and a feedforward input learning scheme to learn 
robot motions [4, 5]. 

The direct model reference adaptive control of MIMO 
systems [13, 14] uses an adaptive control structure that 
consists of command inputs, reference model states, and the 
feedback of the output errors. In an ideal situation, the 
outputs of the system track the outputs of the known 
reference model. Asymptotic stability of this algorithm is 
guaranteed for both the class of almost strictly positive real 
(ASPR) systems and the class of non-ASPR systems [15, 16] 
with supplementary dynamics. The robustness of system 

parameter variations is discussed for ASPR systems with a 
feedforward compensator [20, 21] and for parabolic and 
hyperbolic systems [22]. The non-ASPR direct model 
reference adaptive control algorithms have also been 
extended to discrete-time cases [17], and systems with 
unknown nonlinear functions [18]. The direct model 
reference adaptive control method has been applied to many 
practical problems [19] such as large flexible structures, 
robotic manipulators, drug infusion, and aircraft. 

In this paper, a direct model reference output tracking 
(DMROT) based adaptive PID controller is proposed using 
both feedforward and feedback adaptive mechanisms to 
stabilize the closed-loop system and, at the same time, force 
the outputs of a multi-input multi-output (MIMO) robot 
system to track the outputs of a known reference model. The 
concept of the direct model reference adaptive control of  a 
linear MIMO system is applied by deriving new sufficient 
conditions for perfect output matching and asymptotic 
output tracking. The paper is arranged as follows: Firstly it 
shows the conditions under which the ideal states exist such 
that the system outputs match the desired trajectories 
provided by a reference model. Secondly it discusses the 
conditions under which an ideal control raw exists so that 
the system states track the ideal states. Then it shows that 
the output tracking can be implemented using a PID 
controller with an adaptive mechanism. Finally, the 
sufficient conditions of stability are discussed and an 
example is presented. 

 
2. FORMULATION OF THE SYSTEM 

 
The proposed approach controls the motions of both 

stable and unstable robots to follow the ideal trajectory 
provided by a known reference model using a DMROT 
based PID controller. It allows a single controller to 
manipulate multiple motions of an unstable and not exactly 
known robot by simply driving the stable known reference 
model with multiple input commands as shown in Fig. 1. An 
adaptive PID controller is inserted into the feedback path of 
the DMROT structure which adds additional zeros and poles 
to the closed loop system to improve the stability of the 
robot. This PID controller also coordinates with the adaptive 
feedforward mechanism to control the multiple robot 
motions for output tracking. Since the structure of the robot 
is not exactly known, adaptive mechanisms are used for 
self-adjustment of the PID gains for achieving the best 
performance. 
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The multi-input multi-output (MIMO) time invariant 
linear system with input and output disturbances is 
described as 

)()()()( tdEtuBtxAtx ippppppp −+=  (1) 

)()( tyCty pap =    (2) 

)()()( tdtxCty opppp +=     
 

where n
p Rtx ∈)( , r

p Rty ∈)( , and m
p Rtu ∈)(  are state, 

output, and input vectors, respectively, q
ip Rtd ∈)( and 

r
op Rtd ∈)(  are bounded input and output disturbances, and 

mr
p Rty ∈)(  ( rrm ≤ ) is the tracking output vector of the 

unknown system. Matrices Ap, Bp , Cp, and Ep are not 
explicitly known but their entries are assumed to be 
bounded and the dynamics {Ap, Bp , Cp} is assumed to be 
controllable and observable. Ca is a transfer matrix which 
converts the output vector )(ty p

 to tracking output vector 

)(ty p
. When Ca is a unity matrix, )(ty p = )(ty p

, and when 

rCrank a <)( , dim( )(ty p )<dim( )(ty p ). 
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Fig. 1.  Robot motion control with a reference model 

 
The tracking output vector tracks the output of a known 
reference model described by a stable MIMO time-invariant 
system 

 
 )()()( tuBtxAtx mmmmm +=   (3) 

)()( txCty mmm =   (4) 
 

where mn
m Rtx ∈)( , mr

m Rty ∈)( , and m
m Rtu ∈)(  are state, 

input, and output vectors of the reference model. Matrices 
Am, Bm, and Cm are known. The output error signals, 
represented by vector 

)()()( tyCtyte pamyp −=   (5) 

are filtered by a low-pass filter 
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The filtered error signals are feedback via an adaptive 

PID controller in order to drive the tracking output yp(t) to 
approach the reference model output ym(t). 

 
The feedback mechanism is described by an adaptive 

PID controller as shown below 
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where the parameters KP, KI,, and KD  are unknown and 

are updated adaptively. The adaptive PID controller not 
only provides a quick feedback response but also eliminates 
the tracking error between unknown system and reference 
model outputs. The transform function of the adaptive PID 
controller together with the low-pass filter is 
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Define 
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to obtain the transfer function in a parallel form 
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where Zf(s) is the feedback signal obtained from the output 
of the filter H(s). The state-variable representation of H(s) 
can be described as 
 

)()(1 tety ypf =    (13) 

)()()( 22 tetyaty ypfff +=  (14) 

)()()()()()()( 2211 tetKtytKtytKtz yppefpffpff +−−=   (15) 
 

where zf(t) is the inverse Fourier transform of Zf(s) and eyp(t) 
is the inverse Fourier transform of Eyp(s). Eqs. (13)-(15) can 
be further represented by 
 

)()()( teBtyAty ypffff +=   (16) 

)()()()()( tetKtytKtz yppefpff +−=  
(17) 

 
where 
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The adaptive control law is described by 
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−=   (18) 

 
where the first and second terms are adaptive feedback 
signals contributed by the PID controller and the third and 
forth terms are adaptive feedforward signals contributed by 
the reference model. A block diagram is shown in Fig. 2. 
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Fig. 2.  Output tracking with an adaptive PID controller 
 
A reference model { }mmm CBA ,,  is chosen to provide mr  
desired output trajectories, represented by vector ym(t), when 
driven by m reference input signals, represented by vector 
um(t). The not explicitly known system { }ppp CBA ,,  is 
manipulated by m input signals, represented by vector up(t), 
and generated r  output signals, represented by )(ty p . In 
the perfect output tracking case, the rm number of output 
error signals, represented by the vector eyp(t) approaches 
zero so that the tracking output yp(t) approaches the 
reference output ym(t). Therefore, the objective of adaptive 
control is to compute, without any explicit knowledge of 
system parameter matrices Ap, Bp and 

pC , the adaptive gains: 
KP, KI, and KD such that the tracking output vector yp(t) of 
the unknown system follows the output vector ym(t) of a 
stable known linear reference model. 

3. OUTPUT MATCHING CONDITIONS 
 

Since the structures of system and reference model are 
quite different, the output of the system matches the output 
of the reference model only under certain conditions. In this 
section, we show that there exists an ideal state vector 
denoted by )(* tx p

such that the tracking outputs of an 
unknown system match the desired outputs of a reference 
model. Then, we demonstrate in the next section that the 
state vector of the unknown system xp(t) approaches the 
ideal state )(* tx p

 with an appropriate control input applied to 
the unknown system. When Ca is a full rank matrix, such as 
unity matrix, it yields r=rm. In this case, the multiple output 
matching is very restrictive since it requires all outputs of 
the unknown system track all outputs of the reference model. 
Mathematically 

 
0)()()( →−= tytyte mpyp   (19) 

 
To do this, we need to resolve an n-dimensional vector xp(t) 
from r number of time-varying linear equations represented 
by 

 
)()( tytxC mpp =    (20) 

 
This is difficult to achieve when the order of the output is 
high. However, in some applications, it is not necessary to 
match all outputs of the unknown system to the reference 
model and the matching condition will be relaxed. When a 
lower dimensional reference model output is used, we have 

rr ≤  for the rr ×  matrix Ca and the rank condition 
 

][][ pamapa CCrankCCCCrank =   (21) 
 
is easier to satisfy. The time-varying vector xp(t) can be 
resolved to yield 

 
)()( txCtxCC mmppa =   (22) 

or 
)()( tyty mp =    (23) 

 
An extreme case is to have Ca = [1 0r-1] if 011 ≠pC , where 
0r-1 is a 1 by (r-1) row vector of all zero entries. In this case, 
we always have ( ) )(/)( 111111 txCCtx mpmp =  so that 

)()()()( 11 tytxCtxCty mmmppp === . Let pap CCC =  

and define +
pC  as pseudo-inverse matrix of 

pC , that is 

npp ICC =+ , Eq. (5) becomes 
 

)()()( txCtxCte ppmmyp −=   (24) 
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If the matching condition is satisfied, we obtain an ideal 
state 

 
)()(* txCCtx mmpp

+=    (25) 
 
such that 

 
)()()()( * tytxCCCtxCty mmmppppp === +  (26) 

 
The existence of output matching is determined by 
matrices aC , mC , and pC . Although the values of aC , and 

mC  are known, the ideal state )(* tx p  cannot be calculated 

since the value of pC  is unknown. We have shown that 

such )(* tx p  exists for many systems since the conditions 
stated in (21) are not restrictive. Next, we show that the 
vector xp(t) approaches the ideal state vector )(* tx p . That is, 
the state error vector 
 

)()()( * txtxte ppxp −=    (27) 
 
approaches zero with appropriate inputs, and the PID 
controller state error vector 
 

)()()()( * tytytete ffyfxf −==   (28) 
 

vanishes while the controller output reaches the ideal value. 
 

4. OUTPUT TRACKING CONDITIONS  
 

The existence of the ideal state does not always yield a 
perfect tracking. This section derives the condition under 
which an ideal input exists to drive the system state to 
approach the ideal state asymptotically.  
 

The derivative of (27) gives 
 

)()()( * txtxte ppxp −=    (29) 
 
Inserting (1), (3), and (25) into (29), we have 
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(30) 
where 
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Defining the error dynamic equation of the PID controller as 
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we have the dynamic function for the feedback structure as 
below 
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Since the unknown system is assumed to be controllable and 
observable, there exist constant matrices pepe KtK ~)( = , 

pfpf KtK ~)( = , Af, and Bf such that the meta-system is stable. 

Therefore, if Q(t)=0, 0)( →texp . A solution for Q(t)=0 is to 

assume that )(* ty f  is the linear combination of xm(t) and 

um(t). That is )()()(* tuStxSty mumxf += , where the values of 
constant matrices Sx and Su are introduced only for the 
convenience of theoretic discussion and are not needed in 
implementation. The condition for the existence of Sx and Su 
are discussed as follows: If the meta-system is stable with 

0)( =tK pf  and 
 

][][ mmpmppmmppp BCCCCAACCBrankBrank +++ −= ,  (34) 
 
there exist constant matrices xx KtK ~)( =  and uu KtK ~)( =  
such that 
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In this case, the integrator does not contribute in the PID 
controller. Otherwise, the integrator is activated to balance 
and eliminate the term Q(t). In general, if 
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there exist matrices xx SS ~

= , 
uu SS ~

= , xx KtK ~)( = , and 

uu KtK ~)( =  such that 
 

xpmppmmpxpfp KBCCAACCSKB ~~~ −−= ++  (37) 

upmmpupfp KBBCCSKB ~~~ −= +    (38) 
 
Therefore, 0)( =tQ . 
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Before discussing the adaptive control, it shows that if 
the system is known, we can satisfy the tracking conditions 
in (37) and (38) by manipulating matrices 

xS~ , uS~ , and 
pfK~ . 

This is very important since it proves that the ideal inputs 
exist so that the tracking of the ideal states and desired 
trajectories is achievable. In practice, the system parameters 
are not known and the system is subject to input and output 
disturbances. An adaptive mechanism is used to adjust the 
matrices, )(tK x

, )(tKu
, and )(tK pf

 so that the state xp(t) of 
the not explicitly known system matches the ideal state 

)(* tx p
 and the tracking output of the unknown system tracks 

the output of the reference model asymptotically. That is 
)()()()( * tytxCtxCty mmmppp ==→ . 

It is remarkable that xpfpe KKK ~,~,~
 and uK~  are virtual gain 

matrices used in proving the existence of output tracking. 
Neither their numerical values nor their implementation is 
required. 

 
5. ADAPTIVE MECHANISM AND STABILITY 

 
Since the system is not explicitly known, the feedback 

PID controller is needed to adaptively choose the values of  
Kp, KI, and KD  (equivalently Kpe, Kpf, Kx, and Ku) in order to 
stabilize the dynamics in (33) and eliminate the unwanted 
terms in (35). The term asymptotic output reference model 
tracking means that the system output approaches the 
reference model output, )()( tyty mp → , when the time is 

sufficiently large. When output tracking occurs, the 
corresponding state and control trajectories are defined to be 
the ideal state )()()( * txCCtxtx mmppp

+==  and ideal 

control command )()( * tutu pp =  respectively. While 

 ( ) 0)()()( * →−= tytyCte pmayp ,  

the system is driven by the ideal input )(* tu p
. If the tracking 

conditions discussed in the last section are satisfactory, we 
show that the output tracking can be implemented 
adaptively. 

To show the stability of the adaptive control mechanism, 
we introduce an ideal dynamic system without input and 
output disturbances as shown below 
 

)()()( *** tuBtxAtx ppPpP +=   (39) 

)()()( ** tytxCty mppp ==   (40) 

)()( ** tyAty fff =    (41) 

)(~)(~)(~)( ** tuKtxKtyKtu mumxfpfp
++−=  (42) 

 
Since the system is not known and the virtual matrices 

xpfpe KKK ~,~,~  and uK~  cannot be computed. The adaptive 

structure is designed by computing the adaptive gain 
matrices )(),(),( tKtKtK xpfpe  and )(tKu  to eliminate the 

output tracking errors. Those adaptive gain matrices are 
used to replace the theoretical matrices

xpfpe KKK ~,~,~  and uK~  

in order to stabilize the adaptive control system and to track 
the desired output. The adaptive gain matrices are defined as 
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we rewrite Eq. (18) into a vector form  

 

)()()( trtKtu p =    (47) 

 
The adaptive gain matrix K(t) is chosen to be a combination 
of proportional and integral (PI) terms as follows [1, 2]: 

 
)()()( tKtKtK IP +=    (48) 

 
where the proportional term is described by 

 

TtrtvtK TP )()()( =    (49) 

 

and integral term is described by  

 

TtKtrtvtK ITI )]()()([)( σ−=   (50) 

 
with the initial gains given by 
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I
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The signal v(t) is chosen based upon the Lyapunov stability 
analysis, which is in the form of  

 
)()()()( trtGKtQetv yv +=   (52) 

 
Where 
 

][ fp QQQ =    (53) 

 
The matrices T, T , Q, and G are matrices selected by 

designers such that T and T  are positive definite symmetric 
and positive semi definite symmetric, respectively, and such 
that Q and G satisfy the sufficient conditions for stability, 
and positive scalar σ  is introduced to guarantee robustness 
in the presence of disturbances. 
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The stability of the adaptive system must be studied to 
insure all states and gains have bounded values. In order to 
simplify the stability proof, a meta-state model is used by 
defining meta-vectors: 
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where )()( txty ff = . Combining the state-variable 

equations of the unknown system, Eqs. (1) and (2) with the 
state-valuable equations of the adaptive PID controller in 
(47), to form a metastate valuable system described by 
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where the system is described by meta-matrices:  
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and the disturbances are described by metastates: 
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The adaptive control algorithm described in (55) and (56) 

is stable [15] if there exist a real symmetric positive definite 

matrix P and real matrix uK~  and R, 0>+ TRR , such that 

 

0)~()~( <−−=−+− RLLPCKBACKBAP TT
ee  (59) 
TT QCPB =    (60) 

 
where matrices T and T are positive definite symmetric and 
positive semi-definite symmetric, respectively. The 
sufficient conditions in (59) and (60) only assume that the 
metasystem {A, B, C} is ASPR. In this case, the unknown 
system {Ap, Bp, Cp} is not directly restricted by ASPR 
conditions. 
 

A less restrictive sufficient condition statement is 
developed based on BIBO stability  analysis [9], which 
states that all states and errors in the adaptive system in (59) 
and (60) are bounded if there exist a real symmetric positive 

definite matrix P and real matrices L, W, uK~ , and R, 

0>+ TRR , such that 
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ee  (61) 

LWGKQCPB TT
e
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TT JJWW +=    (63) 

0<+++ TT GGJJ   (64) 
 

The sufficient conditions in (61)-(64) do not restrict to the 
assumption that the unknown system {Ap, Bp, Cp} is ASPR. 
Comparing (59) to (60), the later is much less restrictive due 
to the additional term LW. 
 

6. EXAMPLE 
 

A classic example studied by many authors [14, 15, 19, 
23] is the so called Rohrs’ example described by 

 

22930
229

1
2

)(
)(

2 +++
=

ssssu
sy

p

p   (65) 

 
The open loop system in (65) is stable but has a pair of 
complex unmodeled poles. The root locus of (65) shows that 
the dominant second order term of the corresponding closed 
loop system becomes unstable when the loop gain is larger 
than the admissible limit as shown in Fig. 3. This example is 
considered as a difficult case in adaptive control and is used 
to test various adaptive controllers. 

 Fig. 3  Root locus plot of Rohrs example 
 

The output of the system in (65) is required to follow the 
output of the reference model, which is shown below 
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To demonstrate the necessity of adopting an adaptive PID 
controller, the system response of using a fixed PI controller 
is tested by insert the function 

 

s
ssH )3510()(0
+−

=   (67) 

 
into the feedback loop. As shown in Fig. 4, the dominant 
second order term leads to a stable direction with the 
increasing of loop gain. The square wave response of the 
closed loop systems in (65) with the PI controller in (67) is 
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stable but has a setting time greater than 500 seconds and a 
damping ratio for the dominant poles of less than 0.001 as 
shown in Fig. 5. The performance is unsatisfactory. 

 
Fig. 4.  Root locus plot of Rohrs example with PID 

 
Since the mathematic description of the robot is not 

explicitly known and the parameters of the robot may vary 
unexpectedly, the choice of a proper PID controller becomes 
very difficult. Thus, an adaptive PID controller 

 

s
K

KsH pf
pe −=)(   (68) 

 
is inserted into the feedback loop. The state-variable 
description of (68) is 

 
)()( tetx ypf =    (69) 

)()()()()( tetKtxtKtz yppefpff +=−   
(70) 

 

 
Fig. 5.. Output Tracking with PID Controller 

 
The test is conducted by applying a square wave reference 
command um of magnitude 0.3 units and period of 20 
seconds to the reference model in (66) to generate a desired 
trajectory ym. The adaptive mechanism computes the 

parameters of the PI controller and the gains of the 
feedforward in order to stabilize the system and eliminate 
the output tracking errors. Qp=57.14, Qf=0, and G=0 are 
chosen in the simulation based on the design specifications 
[15]. As shown in Fig. 6, the stability of the closed loop 
system is significantly improved. The output of (65) tracks 
the output of the reference model in (66) asymptotically and 
achieves zero output tracking error in approximately two 
seconds. 
 

 
Fig. 6. Output tracking with Adaptive PID Controller 

 
8. CONCLUSION 

 
Adaptive PID controller based on DMROT is developed 

by using both feedforward and feed back adaptive 
mechanisms. The outputs of the not explicitly known 
MIMO system are forced to track the outputs of a known 
reference model asymptotically. This allows us to 
manipulate and control the multiple motions of a complex 
and not explicitly known robot using a single controller by 
simply operating on a known reference model. It also 
implies to manipulate an unstable and high-order robot by 
dealing with a stable and lower order reference model. The 
parameters of the PID controller are self-adjusted in time to 
achieve the best performance. The adaptive system tolerates 
the parameter change and input/output disturbances. 
Conditions for output matching and output tracking between 
the system and reference model are derived. A matching 
system outputs to reference model output (the ideal 
trajectory) exist if the rank condition in (21) is met. The 
system outputs track the reference model outputs if the rank 
condition in (34) or (36) is satisfied. The stability of the 
adaptive control is ensured for asymptotic or BIBO output 
tracking if the sufficient conditions in (61)-(64) are true. 
Simulation shows that the adaptive PID control eliminates 
output tracking error with a satisfactory performance.  
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