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A Model Reference-Based Adaptive PID Controller for Robot
Motion Control of Not Explicitly Known Systems

Wei SU

Abstract - This paper proposes a model reference tracking based
adaptive PID controller with adaptive mechanisms in both
feedforward and feedback paths. The objective is to force the outputs
of a not explicitly known multiple input multiple output (MIMO)
linear time-invariant system to track the outputs of a known reference
model. A PID controller is inserted to the feedback path. The
parameters of the PID controller are computed adaptively by
eliminating output tracking errors. This approach allows us to
manipulate the multiple motions of a complicated, unstable, or high-
order robot by operating on a simpler, stable, or lower-order known
reference model. The mathematic description of the robot is not
required. Output matching and tracking conditions are derived and
analyzed.

Index Terms — model reference adaptive control, PID control,
output feedback, output tracking, MIMO systems.

1. INTRODUCTION

Robust robot motion control of not explicitly known
systems is a challenging subject in both military and
commercial applications such as unmanned aerial vehicles
(UAVs), bomb disposal mechanics, remotely-operated
weapons, and satellites where the faithful mathematic
description of robots is not available. Recently, many
adaptive PID methods have been developed [1-12]
including Back-Stepping (BS) based adaptive proportional-
integral-derivative controller (PID) control which adds the
integral action and nonlinear damping term to the basic
back-stepping algorithm to guarantee robustness and
bounded errors [1, 2], Generalized Predictive Control (GPC)
based one that uses a PID controller to be equivalent to a
GPC controller and incorporates the advantages of both PID
and GPC [3], Heuristic Rule (HR) based one that employs
rule-based switching and adaptive PID controller to perform
autonomous functions [6], and many neural network based
PID controllers used in various applications [7-9]. Robot
motion control based on adaptive PID control has also been
studied by applying an adaptive PID feedback control
schemes and a feedforward input learning scheme to learn
robot motions [4, 5].

The direct model reference adaptive control of MIMO
systems [13, 14] uses an adaptive control structure that
consists of command inputs, reference model states, and the
feedback of the output errors. In an ideal situation, the
outputs of the system track the outputs of the known
reference model. Asymptotic stability of this algorithm is
guaranteed for both the class of almost strictly positive real
(ASPR) systems and the class of non-ASPR systems [15, 16]
with supplementary dynamics. The robustness of system
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parameter variations is discussed for ASPR systems with a
feedforward compensator [20, 21] and for parabolic and
hyperbolic systems [22]. The non-ASPR direct model
reference adaptive control algorithms have also been
extended to discrete-time cases [17], and systems with
unknown nonlinear functions [18]. The direct model
reference adaptive control method has been applied to many
practical problems [19] such as large flexible structures,
robotic manipulators, drug infusion, and aircraft.

In this paper, a direct model reference output tracking
(DMROT) based adaptive PID controller is proposed using
both feedforward and feedback adaptive mechanisms to
stabilize the closed-loop system and, at the same time, force
the outputs of a multi-input multi-output (MIMO) robot
system to track the outputs of a known reference model. The
concept of the direct model reference adaptive control of a
linear MIMO system is applied by deriving new sufficient
conditions for perfect output matching and asymptotic
output tracking. The paper is arranged as follows: Firstly it
shows the conditions under which the ideal states exist such
that the system outputs match the desired trajectories
provided by a reference model. Secondly it discusses the
conditions under which an ideal control raw exists so that
the system states track the ideal states. Then it shows that
the output tracking can be implemented using a PID
controller with an adaptive mechanism. Finally, the
sufficient conditions of stability are discussed and an
example is presented.

2. FORMULATION OF THE SYSTEM

The proposed approach controls the motions of both
stable and unstable robots to follow the ideal trajectory
provided by a known reference model using a DMROT
based PID controller. It allows a single controller to
manipulate multiple motions of an unstable and not exactly
known robot by simply driving the stable known reference
model with multiple input commands as shown in Fig. 1. An
adaptive PID controller is inserted into the feedback path of
the DMROT structure which adds additional zeros and poles
to the closed loop system to improve the stability of the
robot. This PID controller also coordinates with the adaptive
feedforward mechanism to control the multiple robot
motions for output tracking. Since the structure of the robot
is not exactly known, adaptive mechanisms are used for
self-adjustment of the PID gains for achieving the best
performance.



SU: A Model Reference-Based Adaptive PID Controller for Robot Motion Control of Not Explicitly Known Systems 238

The multi-input multi-output (MIMO) time invariant
linear system with input and output disturbances is
described as

X, (1) =AX,()+B,u, (t)—E d, (1) (D
Y, (O =C.y, () 2
Y, (1) =C, x, () +dy (1)

where xp(t)eR” s yp(t)eR’ , and u,(t)yeR" are state,
output, and input vectors, respectively, d;, () e R and

dy () e RF are bounded input and output disturbances, and

y, () eR™ (I, <r) is the tracking output vector of the

unknown system. Matrices A,, B, , C,, and E, are not
explicitly known but their entries are assumed to be
bounded and the dynamics {A,, B, , C,} is assumed to be
controllable and observable. C, is a transfer matrix which
converts the output vector y,(t) to tracking output vector

Y, () When C, is a unity matrix, yp(t)=yp(t), and when
rank(C,) <, dim( y , () )<dim(y, (t)).

Desired
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Fig. 1. Robot motion control with a reference model

The tracking output vector tracks the output of a known
reference model described by a stable MIMO time-invariant
system

X () = ApXq (O + By, (1) 3)
Y (O =Cpx, (O “4)

where x_(t)eR™,y, (t)e R™, and u_(t)e R™ are state,

input, and output vectors of the reference model. Matrices
A,, B,, and C; are known. The output error signals,
represented by vector

e, =y, 0-C,y, 0 Q)

are filtered by a low-pass filter

by 6)

HL(S):S a
— 4

The filtered error signals are feedback via an adaptive
PID controller in order to drive the tracking output y,(?) to
approach the reference model output y,,().

The feedback mechanism is described by an adaptive
PID controller as shown below

K
Hc(s)zKP+T'+KDs ()

where the parameters Kp, K;, and K, are unknown and
are updated adaptively. The adaptive PID controller not
only provides a quick feedback response but also eliminates
the tracking error between unknown system and reference
model outputs. The transform function of the adaptive PID
controller together with the low-pass filter is

Kps? + Kps+K

H(s)=H_.(s)H, (s)= Lh, (®
(5)=Hc(SH (5) woay D
Define
Kp=K,> &)
K, =K,a,»and (10)
Ko ==K — Ky, — Koy s (1n

to obtain the transfer function in a parallel form

NG _{er_Km_Kmbe, (12)

E,(5) S S—a;

where Z¢(s) is the feedback signal obtained from the output
of the filter H(S). The state-variable representation of H(S)
can be described as

YD) =gy, () (13)
yfz(t):afyfz(t)+eyp(t) (14)

2i (1) =-K Oy, () - K, )y, O+ K (e, ) (15)
where zi(t) is the inverse Fourier transform of Z(s) and ey,(t)

is the inverse Fourier transform of Ey(S). Egs. (13)-(15) can
be further represented by

yf(t):Afyf(t)+Bfeyp(t) (16)
(O =-K, Oy O+K,te,t) A7

where
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Q)
Y2 (D)

0 0 b,
A = s B = ’ and K = K K .
f |:0 af|r:| f |:bf:| pf I. pfl prJ

The adaptive control law is described by

yf(t){ }eRzrst(t)eRm,

Up () = K (De, () = K (DY (D)
+ K, (OX, (O + K, (Ou, (0

(18)

where the first and second terms are adaptive feedback
signals contributed by the PID controller and the third and
forth terms are adaptive feedforward signals contributed by
the reference model. A block diagram is shown in Fig. 2.
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Fig. 2. Output tracking with an adaptive PID controller

A reference model {A ,B ,C,} is chosen to provide I,

desired output trajectories, represented by vector Y,,(t), when
driven by m reference input signals, represented by vector
U,(t). The not explicitly known system {A B Ep} is

P> P2
manipulated by m input signals, represented by vector u,(t),
and generated I' output signals, represented by NOE In

the perfect output tracking case, the I, number of output
error signals, represented by the vector e,,(t) approaches
zero so that the tracking output Yyu(t) approaches the
reference output yn(t). Therefore, the objective of adaptive
control is to compute, without any explicit knowledge of

system parameter matrices A,

Kp, Ki, and Kp such that the tracking output vector y,(t) of

the unknown system follows the output vector Y, (t) of a
stable known linear reference model.

B, and C 0 the adaptive gains:

3. OUTPUT MATCHING CONDITIONS

Since the structures of system and reference model are
quite different, the output of the system matches the output
of the reference model only under certain conditions. In this
section, we show that there exists an ideal state vector
denoted by x;(t) such that the tracking outputs of an

unknown system match the desired outputs of a reference
model. Then, we demonstrate in the next section that the
state vector of the unknown system X,(t) approaches the
ideal state x:(t) with an appropriate control input applied to

the unknown system. When C, is a full rank matrix, such as
unity matrix, it yields r=ry,. In this case, the multiple output
matching is very restrictive since it requires all outputs of
the unknown system track all outputs of the reference model.
Mathematically

e, =Y,y () >0 (19)

To do this, we need to resolve an n-dimensional vector X,(t)
from I number of time-varying linear equations represented
by

C,x, (1) =y, () (20)

This is difficult to achieve when the order of the output is
high. However, in some applications, it is not necessary to
match all outputs of the unknown system to the reference
model and the matching condition will be relaxed. When a
lower dimensional reference model output is used, we have
I <T forthe I X I matrix C, and the rank condition

rank[C,C,:C,C, ]=rank[C,C,] 1

is easier to satisfy. The time-varying vector X,(t) can be
resolved to yield

C.Cx, () =C,x,(t) (22)
or
Yo=Y, (23)

An extreme case is to have C; = [1 0] if 6p11 £ (0, where

0. is a 1 by (r-1) row vector of all zero entries. In this case,
we always have X (t)= (lel /Co )Xml (t) so that

yp(t) = c7:pllxp(t) = mem (t) = ym (t) - Let Cp = Caép
and define C; as pseudo-inverse matrix of Cp , that is

C,C, =1, Eq. (5) becomes

e, (t) =C,x,(®)—C,X, () (24)
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If the matching condition is satisfied, we obtain an ideal
state

X, (1) =C,C_ X, (1) (25)

such that
Yo =C,x,()=C,C.C.x, (D =y,(t)  (6)
The existence of output matching is determined by

matricesC,, C,,, and C o Although the values of C_, and

C,, are known, the ideal state X;(t) cannot be calculated
since the value of C. o is unknown. We have shown that
such x;(t) exists for many systems since the conditions

stated in (21) are not restrictive. Next, we show that the
vector Xy(t) approaches the ideal state vector X:; (t) . That is,

the state error vector
exp (t) = X:)(t) - Xp(t) (27)

approaches zero with appropriate inputs, and the PID
controller state error vector

e (=e, O=Yy;O-Y, O (28)
vanishes while the controller output reaches the ideal value.

4. OUTPUT TRACKING CONDITIONS

The existence of the ideal state does not always yield a
perfect tracking. This section derives the condition under
which an ideal input exists to drive the system state to
approach the ideal state asymptotically.

The derivative of (27) gives
€ (1) =X, (- X%, (D) (29)
Inserting (1), (3), and (25) into (29), we have

€, (1) =C:Co (A, X, ®+B,u, )= (A, x,®)+B,u, 1)
=C;Cp (A X, (1) +Bu, ()= A X, (1)
-B, (K, e, )— K, Oy 1)+ K, Ox,O+K,Hu, )

= (AD -B K (®C, )a‘Xp O +B, K (e, +Q(t)
(30)
where

Q(t) = Bprf (t)y; (t) + (C;CmAm - ApC;Cm (31)
- B, K, )%, (®)+(C,C,B, —B,K,(®)u, )

Defining the error dynamic equation of the PID controller as

€ (=Y (-, ®
= Af y? (t) - Af yf (t) - BpCpexp(t)
= Af €y (t) - chpexp (t)a

(32)

we have the dynamic function for the feedback structure as
below

{exp(t)} _ {Ap ~B,K,(t)C, —B,K, (t)}{exp(t)} J{Q(t)} (33)

éxf (t) - Bpr Af exf (t) 0
Since the unknown system is assumed to be controllable and
observable, there exist constant matrices K e t) = Rpe s

K ()= Rpf , Ay, and By such that the meta-system is stable.
Therefore, if Q(t)=0, e,(t)—>0- A solution for Q(t)=0 is to
assume that y{(t) is the linear combination of Xn(t) and
Un(t). That is y’; t)=S,x, () +S,u, 1), where the values of

constant matrices Sy and S; are introduced only for the
convenience of theoretic discussion and are not needed in
implementation. The condition for the existence of Sy and S,
are discussed as follows: If the meta-system is stable with

K of (t)=0 and
rank[B,]=rankB, iC;C,A, ~AC;C, C.C B ], 34)

there exist constant matrices K, (t) = |ZX and K, (t) = Ku
such that

(Crcuhn - ApCpCn - B Je® o oty = 0. 9)
+(C,C,B, -B,K,)u,t)=0
In this case, the integrator does not contribute in the PID
controller. Otherwise, the integrator is activated to balance
and eliminate the term Q(t). In general, if
rank[B, K, 1= rank[B,K , :C;C A —AC,C,
-B,K,:C;C, B, -B,K,]

» (36)

there exist matrices § =S , s =5 , K (t)=K, , and

K, (t) = K, such that

=C.C,A, ~AC.C, ~B,K, (37)

B,K,S,
B,K,S, =C,C,B, ~B,K, (38)

Therefore, Q(t) =0.
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Before discussing the adaptive control, it shows that if
the system is known, we can satisfy the tracking conditions
in (37) and (38) by manipulating matrices § , §u ,and K o

This is very important since it proves that the ideal inputs
exist so that the tracking of the ideal states and desired
trajectories is achievable. In practice, the system parameters
are not known and the system is subject to input and output
disturbances. An adaptive mechanism is used to adjust the
matrices, K (t), K, (t), and Ky (1) SO that the state X,(t) of

the not explicitly known system matches the ideal state
x; (t) and the tracking output of the unknown system tracks

the output of the reference model asymptotically. That is

Y, () = CoXp (1) = Co X (1) = ¥, (1) -
It is remarkable that er, }pr ,
matrices used in proving the existence of output tracking.
Neither their numerical values nor their implementation is

required.

IZX and |Zu are virtual gain

5. ADAPTIVE MECHANISM AND STABILITY

Since the system is not explicitly known, the feedback
PID controller is needed to adaptively choose the values of
Ko, Ki, and Kp (equivalently Kpe, Ky, Ky, and Ky) in order to
stabilize the dynamics in (33) and eliminate the unwanted
terms in (35). The term asymptotic output reference model
tracking means that the system output approaches the
reference model output, y (t) -y, (t). when the time is

sufficiently large. When output tracking occurs, the
corresponding state and control trajectories are defined to be

the ideal state X (t)= x;(t) =C,C,X,(t) and ideal
control command y ) t)= u; (t) respectively. While

e, (0 =C, (¥a (- Y, (1) >0,
the system is driven by the ideal input uy(t)- If the tracking

conditions discussed in the last section are satisfactory, we
show that the output tracking can be implemented
adaptively.

To show the stability of the adaptive control mechanism,
we introduce an ideal dynamic system without input and
output disturbances as shown below

Xp (1) = A X (D) +BouL (1) (39)
Y, (1) =C,x, () =y, (1) (40)
Yi@®=A v () (41)

U’ () = =Ky i (0 + Kx, () + K () (42)

Since the system is not known and the virtual matrices
Koo Ky, K, and K, cannot be computed. The adaptive
structure is designed by computing the adaptive gain

matrices er(t),Kpf 1), K, () and K,(t) to eliminate the

output tracking errors. Those adaptive gain matrices are
used to replace the theoretical matrices er, Kpf , |Zx and }Zu

in order to stabilize the adaptive control system and to track
the desired output. The adaptive gain matrices are defined as

K®) =[K () KO Ky ()] (43)
and .
e, (t)
rit) =1 x,t) (44)
Up, (1) |
where K, (t) =[K (1) K ()] 45)
[ep® ]
and eyv(t) = [_ Y. (t)_ s 46)

we rewrite Eq. (18) into a vector form
u,(t)=K@r() (47)

The adaptive gain matrix K(z) is chosen to be a combination
of proportional and integral (PI) terms as follows [1, 2]:

Kt) =K () +K'(t) (48)
where the proportional term is described by

KP @) =vt)r T (49)
and integral term is described by

K'(t) =[v)r' (t) - oK' (O (50)

with the initial gains given by

K'(0)=[K, (0) K (0) K, (0)] G

The signal v(¢) is chosen based upon the Lyapunov stability
analysis, which is in the form of

v(t) = Qe,, (t) + GK(D)r(t) (52)

Where

Q=[Q, Q] (53)

The matrices 7, T, Q, and G are matrices selected by
designers such that T and T are positive definite symmetric
and positive semi definite symmetric, respectively, and such
that Q and G satisfy the sufficient conditions for stability,
and positive scalar o is introduced to guarantee robustness
in the presence of disturbances.
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The stability of the adaptive system must be studied to
insure all states and gains have bounded values. In order to
simplify the stability proof, a meta-state model is used by
defining meta-vectors:

_(%®] Y, (t)
X0 {xf (t)} "y = [yf (t)}

(54)

where Y (t) = X;(t) . Combining the state-variable

equations of the unknown system, Egs. (1) and (2) with the
state-valuable equations of the adaptive PID controller in
(47), to form a metastate valuable system described by

X(t) = Ax(t) + BK(t)r(t) + d,
y(t)=Cx(t)+d,

(55)
(56)

where the system is described by meta-matrices:
Al A 0] g [B ] o[G0 57)
-B,C, A 0 0 1,
and the disturbances are described by metastates:

} and d_(t) :{d%(t)} (58)

The adaptive control algorithm described in (55) and (56)
is stable [15] if there exist a real symmetric positive definite

E d (t)
d- — pip
' {Bmym(t)—dop(t))

matrix P and real matrix IZU andR, R+ R" >0, such that

P(A-BK,C)+(A-BK,C)"P=-LL" —R <0 (59)
PB=C'Q" (60)

where matrices T and T are positive definite symmetric and
positive  semi-definite symmetric, respectively. The
sufficient conditions in (59) and (60) only assume that the
metasystem {A, B, C} is ASPR. In this case, the unknown
system {A,, B,, C,} is not directly restricted by ASPR
conditions.

A less restrictive sufficient condition statement is
developed based on BIBO stability analysis [9], which
states that all states and errors in the adaptive system in (59)
and (60) are bounded if there exist a real symmetric positive

definite matrix P and real matrices L, W, IZU , and R,
R+R" >0, such that

P(A-BK,C)+(A-BK,C)'P=-LL" —R<0  (61)

PB=C"(Q" +K]G")-LW (62)

WwW=J+J" (63)

J+JT+G+G" <0 (64)
The sufficient conditions in (61)-(64) do not restrict to the
assumption that the unknown system A, B,, C,} is ASPR.
Comparing (59) to (60), the later is much less restrictive due
to the additional term LW.

6. EXAMPLE

A classic example studied by many authors [14, 15, 19,
23] is the so called Rohrs’ example described by

Yo(8) 2 229

= (65)
u,(s) s+1s*+30s+229

The open loop system in (65) is stable but has a pair of
complex unmodeled poles. The root locus of (65) shows that
the dominant second order term of the corresponding closed
loop system becomes unstable when the loop gain is larger
than the admissible limit as shown in Fig. 3. This example is
considered as a difficult case in adaptive control and is used
to test various adaptive controllers.

Root Locus
40 T

Imaginary Axis
o
sl w

b ; i

a0t ; |

- ‘ . . ‘ ;
-0 -40 -30 -20 -10 0 10

Real Axis

Fig. 3 Root locus plot of Rohrs example

The output of the system in (65) is required to follow the
output of the reference model, which is shown below

Yu(s) _ 1

u,(s)y 1+s/3
To demonstrate the necessity of adopting an adaptive PID
controller, the system response of using a fixed PI controller
is tested by insert the function

(66)

(67)

H, (5) = —(102+ 35)

into the feedback loop. As shown in Fig. 4, the dominant
second order term leads to a stable direction with the
increasing of loop gain. The square wave response of the
closed loop systems in (65) with the PI controller in (67) is



243 INTERNATIONAL JOURNAL OF INTELLIGENT CONTROL AND SYSTEMS, VOL. 12, NO. 3, SEPTEMBER 2007

stable but has a setting time greater than 500 seconds and a
damping ratio for the dominant poles of less than 0.001 as
shown in Fig. 5. The performance is unsatisfactory.

Root Locus
40 T T T

30+ : g

20+ H —

Imaginary Axis
o
T

20k : N

a0k : i

40 L L i L I L
=30 =20 -0 o 10 20 a0 40

Real Axis

Fig. 4. Root locus plot of Rohrs example with PID

Since the mathematic description of the robot is not
explicitly known and the parameters of the robot may vary
unexpectedly, the choice of a proper PID controller becomes
very difficult. Thus, an adaptive PID controller

H(s) =K, —% (68)

is inserted into the feedback loop. The state-variable
description of (68) is

X; () =€, (1) (69)
Z (1) =K (D)X, (1) + K (De,, (D) (70)

yp

1 1

0 5 10 15 20
Time (sec)

|
(=]
[03]

Fig. 5.. Output Tracking with PID Controller

The test is conducted by applying a square wave reference
command u, of magnitude 0.3 units and period of 20
seconds to the reference model in (66) to generate a desired
trajectory y,. The adaptive mechanism computes the

parameters of the PI controller and the gains of the
feedforward in order to stabilize the system and eliminate
the output tracking errors. Q,=57.14, O=0, and G=0 are
chosen in the simulation based on the design specifications
[15]. As shown in Fig. 6, the stability of the closed loop
system is significantly improved. The output of (65) tracks
the output of the reference model in (66) asymptotically and
achieves zero output tracking error in approximately two
seconds.

0.4 T T T
----- model
0.3 1 plant -
0.2 1 -
i [
i
0.1 -1
s
0 -
Q.
>
-0.11 -
0.2 t‘ 1
-0.3r1 ‘ .
-0.4 . y .

(=]

5 10 15 20
Time (sec)

Fig. 6. Output tracking with Adaptive PID Controller

8. CONCLUSION

Adaptive PID controller based on DMROT is developed
by using both feedforward and feed back adaptive
mechanisms. The outputs of the not explicitly known
MIMO system are forced to track the outputs of a known
reference model asymptotically. This allows us to
manipulate and control the multiple motions of a complex
and not explicitly known robot using a single controller by
simply operating on a known reference model. It also
implies to manipulate an unstable and high-order robot by
dealing with a stable and lower order reference model. The
parameters of the PID controller are self-adjusted in time to
achieve the best performance. The adaptive system tolerates
the parameter change and input/output disturbances.
Conditions for output matching and output tracking between
the system and reference model are derived. A matching
system outputs to reference model output (the ideal
trajectory) exist if the rank condition in (21) is met. The
system outputs track the reference model outputs if the rank
condition in (34) or (36) is satisfied. The stability of the
adaptive control is ensured for asymptotic or BIBO output
tracking if the sufficient conditions in (61)-(64) are true.
Simulation shows that the adaptive PID control eliminates
output tracking error with a satisfactory performance.
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