
Reconfiguration of Ladder Logic Diagrams with Dynamic Input Sets

Jing LIU and Houshang DARABI

Abstract - This paper addresses the design process of
programmable logic controller (PLC) ladder logic diagram (LLD)
when the PLC input channels are subject to failure/repair. Given a
traditional LLD and its feasible behavior, a finite automata (FA)
supervisory control model of the LLD is developed. Partial
observation theory is used to extend the generated FA model to a
mega-controller. The mega-controller can modify (reconfigure) the
control strategies when the FA events are partially observed. The
mega-controller model is then converted to an LLD that is tolerable
with respect to the availability of the PLC input channels. The
developed framework can be used in industrial systems that PLCs
have many input channels and these input data to PLC could be
unavailable temporarily due to communication network congestion,
sensor failure, disconnected input devices, etc. We illustrate the
proposed theory by an example.

Index Terms—Control Reconfiguration, Finite Automata Analysis,

and Ladder Logic Diagram.

1. INTRODUCTION

Programmable Logic Controllers (PLC) are widely used

in shop floor automation, and Ladder Logic Diagram (LLD)
is the most popular programming language of PLCs. An
LLD based program continuously reads the state of the
system that it is controlling. The system state is determined
by the plant information that the (LLD based) controller
receives through its input channels. In the current design
process of LLD, it is assumed that these channels are
always available and that they can properly report their
corresponding information to the controller. In practice,
this assumption is not necessarily true. In fact, when the
number of plant automated components increases, it is
likely that the information regarding the states of these
components is partially reported to the controller. In this
case we say that the controller has a partial observation of
its plant (i.e. controlled system). Reasons for incomplete
observation include but not limited to: sensor failure,
communication line congestions and delays, long scan time,
low analog to digital conversion precision of the PLC input
module in collecting the input signals, power outage in the
input module layer, excessive input channels, and the
failure of human in triggering PLC online commands on
time. This paper intends to extend the traditional existing
Ladder Logic Diagram (LLD) to a reconfigurable LLD
which is capable of adapting its logic on the fly according
to observable plant information. To achieve this goal, a
formal method for observation analysis of LLD is essential.

Theoretically speaking, the availability of observation
means can be considered as a partial observation problem.
For the systems modeled by Finite automata (FA), partial

observation problem was investigated by [2, 3] originally.
These works determined the conditions under which a
given set of observation means can be used for a proper
control. However, these works had a fixed view of the
observation means and the proposed algorithms could not
be applied in situations that the availability of means was
changing. Reference [4] presented a switching theory to
dynamically reconfigure a DES controller under dynamic
partial observation. Reference [5] gave a broader view of
this problem by developing new dynamic observation
theory-finite time observation policies, and reconfiguration
strategies. This work introduced more tolerable control
policies compared to the other works in the literature. The
results derived in [5] provide the theoretical guidelines of
the research presented in the current paper. However, the
theory of [5] cannot be directly applied to the LLD design.
The following comparison of LLD and finite automata
controllers presents the main reason behind this claim:

1. The FA controller is a permissive controller, i.e., it
allows events to happen but it does not force them.
However, LLD controller forces the output to activate or
de-activate.

2. For the FA controller, in one unit of time, at most
one event can occur. But in LLD, in one scan time (one
unit of time), multiple input and output changes may
happen.

3. Usually, there is not a one-to-one relationship
between FA controller events and PLC I/O signal changes.
Therefore, there might be a need to translate PLC input
signals to FA controller events and the controller feedback
to PLC output signals.

4. The feedback of the FA controller applies to the
events themselves, but the LLD is translated to the control
actions only on the outputs, not the inputs. The outputs can
affect the plant behavior which in return determines the
value of the inputs.

Studies have been carried out on the analysis and
verification of LLDs [6-12]. The most popular approach
proposed in these works is to develop a controller with one
of the formal controller construction techniques, such as
Finite Automata [1, 13] and Petri nets [14-22], and convert
the resulting model to LLD. The constructed controller is
first analyzed and then a conversion procedure generates
an equivalent LLD of the controller. Therefore, the final
LLD is guaranteed to carry the same control properties as
of the constructed model. The FA controller construction
technique can generate a maximally permissive controller
from a DES plant and control specifications. The
conversion from an FA controller to LLD was addressed
by [6, 22], which is basically the conversion of a state-
transition diagram to LLD [6, 23-24]. While this

Manuscript received December 1, 2004, revised February 15, 2005.
The authors are with the Department of Mechanical and Industrial
Engineering, 842 W. Taylor Street, University of Illinois at Chicago,
IL 60607, USA (e-mail: jliu4@uic.edu and hdarabi@uic.edu).

INTERNATIONAL JOURNAL OF INTELLIGENT CONTROL AND SYSTEMS
VOL. 10, NO. 1, MARCH 2005, 94-106

conversion is algorithmically true, the resulting LLD is
usually not implementable, i.e., it cannot be directly run on
PLC. The work [25] converts an FA controller to a ladder
logic diagram while assuring its implementability as a PLC
program. However, these approaches have been rarely used
by practitioners [26]. In fact none of these researches has
considered a real-world model of LLD and they are all
limited to a simplified LLD. This has prevented the
industry from using their techniques.

This paper intends to integrate the reconfigurability into
the design of LLDs. It presents the observation analysis
theory that can systematically and comprehensively
analyze the situations caused by the unavailability of input
information, and proposes a proactive measure to prevent
out-of-control states. Conversion algorithms are proposed
in order to bridge the gap between LLD and FA controllers
as mentioned above.

Figure 1 shows the outline of the steps introduced in
this paper: (1) a given LLD is first converted to a finite
automaton with and a special feedback function ′Φ ; (2)
the feedback function is then translated to a regular
(Ramadge-Wonham) feedback function, say

′Φ
Φ ; (3) the

observation analysis is performed on the FA controller and
the result is a new controller called mega-controller; (4) the
implementability of the mega-controller is verified by
solving an Integer Linear Programming (ILP) model and
an implementable mega-controller, called extended mega-
controller is generated; (5) the extended mega-controller is
converted to an LLD, called reconfigurable LLD, that
integrates the reconfigurability to the original LLD. The
paper is organized as follows. Section 2 reviews the theory
concerning supervisory control based on finite automata. It
also reviews the existing works on observation analysis
and control reconfiguration of discrete event systems
(DES). Section 3 presents the translation from a LLD to a
finite automaton and the generation of feedback on outputs.
Section 4 addresses the translation from feedback on
outputs to feedback on events. Section 5 discusses the
observation analysis on the FA controller. Section 6

discusses the reconfigurable LLD implementation. Section
7 presents an illustrative example. Concluding remarks and
potential future research issues are given in Section 8.

2. PRELIMINARIES

According to [1], a DES can be modeled by a finite
automaton 0(, , , ,)mG Q q Qδ= Σ , where Q is the set of
states, Σ is the finite set of events (which can be
partitioned into two disjoint subsets, controllable events set

cΣ , and uncontrollable events set), ucΣ : Q Qδ ×Σ → is
the transition functions, q0 is the initial state, and
is the set of marked states. Suppose that is the set of
finite length strings of

mQ Q⊆
*Σ

Σ . The extension of δ on *Σ is
defined as (,) ((,),)q s q sδ σ δ σδ= where *sσ ∈Σ . G is

said to be blocking if mL ⊂ L , and nonblocking if mL L= ,
where is the language

generated by G and

*
0{ : (,) is defined}L s q sδ= ∈Σ

*{ : such that andmL s t st L= ∃ ∈Σ ∈

0(,) }mq st Qδ ∈ . G models the uncontrolled plant. The
supervisor S (or controller) interacts with G in a closed
loop manner (Fig. 2), and it assures that the plant does not
violate a given set of control specifications. Observation
means report the occurrence of events in G to S.
Mathematically, (,)S= ΦS , where
is a deterministic automaton with state set X, initial state x

0(, , , ,)mS X f x X= Σ

0,
a marked subset mX X⊆ , and transition function

:f X X×Σ → ; : {1,0, }X dcΦ ×Σ→ is the feedback
function. Similar to the extension of δ on the strings of

*Σ , function f can also be extended on these strings.
(,) 1x σΦ = (0) indicates that the control action at state x

is to enable (disable) event σ . “dc” is an abbreviation for
“don’t care”, which implies that the enabling or disabling
of σ at x doesn’t affect the behavior of G. : 2X ΣΓ → is
the active event function, and is defined as

() { : (,)x e f x eΓ = is defined} for all x X∈ . In other
words, ()xΓ includes all the events that are enabled by S
at state x . The controlled plant language, so called
coupled language, is shown by (/)K L G= S .

Assume that for every event there is an observation
means to report its occurrence to the controller, repair and
failure of the observation means are modeled by two sets
of events, R and B, respectively. Suppose that b Bσ ∈ ,
r Rσ ∈ are the breakdown and repair events of the

FA + Φ'
LLD

I/O
Sequence

FA + Φ

Output-Event
Relation Λe(x)

Mega-

Controller (S)

Observation

Plant (G)

Fig. 2. Control Loop.

Controller

RReeccoonnffiigguurraabbllee
LLLLDD

IP model
Φ1 → Φ'1

Observation
Analysis

Conversion
Algorithm 1

Translation
Algorithm

Conversion
Algorithm 2

Extended
Mega-
Controller

Fig. 1. Methodology Flow Chart.

Liu and Darabi: Reconfiguration of Ladder Logic Diagrams with Dynamic Input Sets 95

observation means that reports the occurrence of event
σ ∈Σ . We use the notation _y X SS= to show a state of
a mega-controller. In this notation X X⊆ and

. Here
1 2

(, , , , ,
i

SS ss ss ss ssσ σ σ σ= L L

)
n i

ssσ is the

observation means status of event iσ in

1 2{ , , , , , }i nσ σ σ σΣ = L L , and
i

ssσ = 0(1) if the

observation means reporting event iσ is failed (working).
Given the maximally permissive controller (,)S= ΦS

(recall that), the mega-controller
automaton can be constructed as
follows:

0(, , , ,)mS X f x X= Σ

0(, , , ,)mY E g y YΘ =

1- Let , E B R= ΣU U _y X SS= , 0 0 _11 1y x= L ,
 and {}Y = 0{ }A y= . Let . Define 0y y= 0{ }mY y= .

2- For every σ ∈Σ , define the feedback function as:

0, if : (,) 0;

if : (,) 1
(,) 1,

and : (,) 0;

, otherwise.

x X x

x X x
y

x X x

dc

σ

σ
σ

σ

⎧
∃ ∈ Φ =⎪

⎪
⎪ ∃ ∈ Φ =⎪Φ = ⎨

′ ′∃ ∈ Φ =⎪
⎪
⎪
⎪⎩

%

 and

.

1, if 1;
(,)

, otherwise.
ss

y b
dc

σ
σ

=⎧
Φ = ⎨

⎩
%

1, if 0;
(,)

, otherwise.
ss

y r
dc

σ
σ

=⎧
Φ = ⎨

⎩
%

3- For every ()
x X

xσ
∈

∈ ΓU such that , 1ssσ =

3-1 Create the relationship (,) 'g y yσ = where y′ is
calculated by the following steps:

3-1-1 1 { (,) | X, (,) is defined.}X f x x f xσ σ= ∈ ;

3-1-2 {2 1(,) | ,X f x t x X= ∈

 }*{ | and 0} , (,) is defined. ;et e e ss f x t= ∈Σ =

3-1-3 1 2'X X X= U , and 'SS SS= ' : '_ 'y X SS= ;
3-2 If is neither in Y nor in A, add it to A. y′

4- For every σ ∈Σ such that , 0ssσ =
4-1 Create the relationship (,) 'g y b yσ = where

' _ ' , y X SS′= '

0, if '
,

, otherwise
ss

ssσ
σ

σ σ=⎧
= ⎨
⎩

 and

{
}*

' (,) | ,

{ { | , 0 or ' }

X f x t x X

t ssσσ σ σ σ′

= ∈

′ ′= ∈Σ = = .

4-2 If is neither in Y nor in A, add it to A. y′
5- For every σ ∈Σ such that , 1ssσ =

5-1 Create the relationship (,) 'g y yσ = where
(,) 'g y r yσ = , ' : _ 'y X SS= and

'

1, if ' ;
.

, otherwise
ss

ssσ
σ

σ σ=⎧
= ⎨
⎩

 If is not in Y, add

that to Y;

y′

5-2 If y′ is neither in Y nor in A, add it to A.
6- Remove y from A. Add y to Y. If A is empty then go

to step 7, otherwise select one of the elements of A,
call it y and go to step 2.

7- Revise the generated automaton by performing a
trimming process (see [1] for the details of the
trimming process) and consider
to be the revised automaton.

0(, , , ,)mY E g y YΘ =

In short, in the trimming process all the states in Y that
are dangling (no string of events exists from them to)
are removed. The removal is done by revising the feedback
function

0y

′Φ (disabling appropriate controllable events) in
non-dangling states of Y such that the strings that lead to
dangling states are disabled.

3. CONVERSION FROM LLD TO FA

The objective of this section is to introduce a method

for converting a given LLD to a finite automaton while
preserving the behavioral properties of the LLD. This
conversion is labeled by Algorithm 1 in Fig. 1. The
resulting FA is used to design a fault tolerant control policy
that increases the amount of time that the PLC, with partial
observation of the plant events, can properly control the
plant. We assume that the following information is known
before the conversion proceeds: a) PLC outputs; b) PLC
inputs, and c) The complete sequence of possible input
values and their corresponding output
activation/deactivation commands generated by PLC per
scan.

 To convert the LLD to an FA model, we need to
capture the behavior of the LLD. The PLC communicates
with the plant through input and output channels. The
change of input and output status reflects the control
activities of the PLC, and also reflects the state of the
system. For small systems with less than one hundred of
rungs of LLD, the input signals are manually entered into
the LLD in their order of occurrence and the resulting
outputs are recorded. For the complex systems, with the
aid of a PLC simulator (emulator), the input and output
status is written into a database at each scan.

We assume that the inputs and outputs of PLC are
Boolean. Define 1 2{ , , , , , }k mI i i i i= L L as the set of inputs,
where is the input, and m is the total number of
inputs. Similarly let

ki
thk

1 2{ , , , , , }kO o o o on= L L be the set of
outputs, where is the output, and n is the total
number of outputs. Also define

ko thk
IO
jV as the input and output

status vector at the jth scan with size of () , m n+ [0,]j N∈
and N is the total number of scans recorded. We assume
that the selected N scans cover all the control paths that are
executed by the LLD when it controls the plant. In fact

96 INTERNATIONAL JOURNAL OF INTELLIGENT CONTROL AND SYSTEMSVOL. 10, NO. 1, MARCH 2005

IO
jV is a binary vector in which each digit shows the status

of an input or output. Let I
jV (O

jV) show the input (output)

status vector at the jth scan with size of m (n). I
jV (O

jV) is a
binary vector in which each digit shows the status of an
input (output).

The converted FA is shown by .
The input’s status changes (from on to off, or from off to
on) are considered as events, and thus the possible events
are where is the off-to-
on (from 0 to 1) event of the k

0(, , , ,)mS X f x X= Σ

1 1 2 2{ , , , , , , , , , }k k m mi i i i i i i i+ − + − + − + −L L ki
+

th input and is the on-to-
off (from 1 to 0) event of the k

ki
−

th input. Not the events listed
above may be included in the event set . Define (as
the k

Σ)kV
th element of vector V . Before discussing the

conversion algorithm, we introduce the following two
functions. Binary representation of a vector V , shown by

()Vβ , is a binary number where content of its kth position
bit equals to the value of the kth element of V . Indexes of
non-zero elements of a vector V shown by the set 0 ()Ind V .

Conversion Algorithm 1: Conversion from LLD to FA
Begin

1. Let 0 0()IOx Vβ= , , Σ = ∅ 0{ }X x= , mX = ∅ , and
. 1j =

2. Compare IO
jV with 1

IO
jV − ,

a) If IO
jV = 1

IO
jV − , go to step 4.

b) If I
jV is different from 1

I
jV − , add to(IO

jVβ) X ,

and let 1
I I I
j j jV V V −Δ = − ,

For to m 1k =
If , add to () 1I

j k
VΔ = ki

+ Σ , let

()1(), ()IO I
j k jf V i Vβ β+
− = O ;

If , add to () 1I
j k

VΔ = − ki
− Σ , let

()1(), ()IO I
j k jf V i Vβ β−
− = O .

End For
c) Otherwise, add ω to , toΣ (IO

jVβ) X , let

()1(), ()IO I
j jf V Vβ ω β− = O .

3. The feedback function is defined as

()
()
()

1 if 1
(),

0 if 0

O
j kIO

j k O
j k

V
V o

V
β

⎧ =⎪′Φ = ⎨
=⎪⎩

 . [1,]k n∀ ∈

4. Let . If go to step 2, otherwise go to
step 5.

1j j= + j N≤

5. Let mX X= .
End.

From the algorithm steps it is trivial that the maximum
number of FA states generated by the algorithm is ()2 m n+ ,
that is ()2 m nX +≤ .

Proposition 1. If the selected scans cover all possible
control paths that the PLC LLD can experience, the
converted FA with the feedback function ′Φ and the LLD
both generate the same sequences of input and output
vectors.

Proof: Since the selected scans cover all possible
control paths that the PLC LLD can experience, by the
algorithm construction, starting from the initial state, for
every change in the input vector, both the LLD and FA
yield the same output vectors. Also event e exists in the
LLD control path if and only if it exists in the FA control
path (recall that event e is a member of

1 1 2 2{ , , , , , , , , , , }k k m mi i i i i i i i ω+ − + − + − + −L L that is generated in the
FA based on its existence in the LLD). Taking into account
that event ω represents all the changes in the outputs that
are accompanied by no input changes in the same scan,
and given the fact that the PLC output information are
included in the state information of the FA model, the two
LLD and FA controllers follow the same sequences of
input and output vectors.■

In the following we discuss some the issues related to
the above algorithm. First issue is the concept of virtual
event. We have created a virtual event, shown by ω , to
model the changes of the internal relays which cause the
output changes (while no input changes occur). Because
the change of internal relay status is always observable by
the PLC, we can actually ignore the event ω in the
observation analysis. The second issue is the marked state
set of the generated finite automaton. Without loss of
generality we set 0{ }mX x= , i.e. we assume a cyclic
behavior for the controlled plant. The third issue is the
feedback function : {X O 1,0}′Φ × → that is applied to the
output set O . This function does not satisfy the
requirements of supervisory control theory as it is not
defined based on the FA events (that are PLC input
changes and event ω). In fact, we need a feedback
function in form of : {1,0, }X dcΦ ×Σ → where

1 1 2 2,i i{ , , , , , , , , , }k k m mi i i i i i ω+ − + − + −Σ ⊆ L L+ − . In the next section,
we translate ′Φ into Φ to resolve this problem.

4. TRANSLATION FROM TO : {X O′Φ × → 1,0}

}: {1,0,X dcΦ ×Σ →

The translation algorithm of this section explains the

details of the box labeled by “Translation Algorithm” in
Fig. 1. In order to translate ′Φ to , we need to find the
relationship between the output set O and the event set

Φ
Σ .

The outputs and events (inputs) are not one to one related
because multiple outputs may have effect on the
occurrence of one event, and similarly, one output may
affect the occurrence of multiple events. Furthermore, the
relationships between events and outputs are state-
dependent. We assume that such relationships are available
and can be defined. To mathematically model an event-

Liu and Darabi: Reconfiguration of Ladder Logic Diagrams with Dynamic Input Sets 97

3o−

output relationship, we define () to denote output
 is on (off). Using this notation and logical operators

“AND” and “OR” one can show the relationships. For
example, suppose that if is on, or is on and is off,
then event is possible to happen. Therefore one
relationship between event and outputs , and

can be written as .

ko+
ko−

ko

1o 2o 3o

1i
+

1i
+

1o 2o 3o

() ()1 2 OR AND o o+ +

We use a matrix to show the event-output relationships
in every state. For state x, each row of its event-output
relationship matrix shows the “AND” relation among the
outputs, and the relation among different rows is of “OR”
type. This means that if all the output conditions in at least
one row of this matrix hold then the event can happen. We
use ()e xΛ to show the event-output relationship matrix for
event e at state x. The size of ()e xΛ is where n is
the number of outputs, and r x is the number of rows of

()er x n×
()e

()e xΛ . [] ,
()e a b
xΛ corresponds to the status of o in the ab

th

row vector, and its content is 0, 1 or dc for o off, o on,
or does not contribute to the occurrence of event e
respectively.

b b

bo

In the traditional supervisory control theory it is
assumed that the controllability of an event is fixed.
However for the supervisory controller generated from
LLD this might not be true. This means that for a given
event, one can disable the event in some occasions but not
others. Accordingly, we propose a concept called dynamic
controllability to describe the change in the event
controllability over time. An event is controllable as long
as there is at least one combination of outputs that can
cause that event to be disabled. If no such combination
exists then the event becomes uncontrollable. Since for
every event, the output conditions change from one state to
another, the controllability of events is fixed in every state
but it could change when the controller state changes.

Suppose that ()c xΣ is the set of controllable event set
at state and Xx∈ ()uc xΣ is the set of uncontrollable
events at state . If Xx∈ ()e xΛ is not defined (it has no
rows), then event e is uncontrollable at state x, i.e.

; otherwise e it is controllable at state x. The
feedback function

∈Σ
()uce∈Σ x

}: {1,0,X dcΦ × is defined as
follows,

Σ →

[]
[]

,

,

1 if (,) is defined; (Cases 1 and 2)

[1, ()], ()
(,) 0

and () (,); (Case 5)

otherwise.(Cases 3 and 4)

e e a b

e ba b

f x e

a r x x dc
x e

x x o

dc

⎧
⎪
⎪
⎪

∀ ∈ ∃ Λ ≠⎪⎪Φ = ⎨
′Λ ≠ Φ⎪

⎪
⎪
⎪
⎪⎩

Fig. 3. Feedback Function Generation Cases.

Five cases in the feedback function generation are
shown in Fig. 3. Further explanations of these cases are
given below.

Case 1: because (,)f x e is defined, event e must be
enabled at state x; because ()e xΛ has no rows, therefore

()uce x∈Σ .
Case 2: because (,)f x e is defined, event e must be

enabled at state x; because ()e xΛ has at least one row,
therefore ()ce x∈Σ .

Case 3: because (,)f x e is not defined, event e is not
enabled at state x; because ()e xΛ is not defined,

()uce x∈Σ . For an uncontrollable event, if it is not enabled,
the feedback on it can only be “don’t care”.

Case 4: because (,)f x e is not defined, event e is not
enabled at state x; because in each row of ()e xΛ , there is
at least one output o such that b [] ,

() e a b
x dcΛ ≠ and

[] ,
() (,)e a b bx x o′Λ ≠ Φ , event e is not disabled; because

()e xΛ has at least one row, e . For a non-enabled
and non-disabled controllable event, the feedback can only
be “don’t care”.

()c x∈Σ

Case 5: because (,)f x e is not defined, event e is not
enabled at state x; because in each row of ()e xΛ , there is
no such that bo [] ,

() e a b
x dcΛ ≠ and

[] ,
() (,)e a b bx x o′Λ ≠ Φ , event e is disabled; because ()e xΛ

is defined, e ()c x∈Σ . In this case the current state of
outputs (based on feedback function Φ does not match
with any of the output conditions shown by the rows of

′

()e xΛ .

5. OBSERVATION ANALYSIS ON FA CONTROLLER

The converted FA model S and the feedback function

Φ form an FA supervisory controller. The next step is to
perform the observation analysis (shown by the box labeled
“Observation Analysis” in Fig. 1). The observation analysis
can provide the minimum sufficient input information that

98 INTERNATIONAL JOURNAL OF INTELLIGENT CONTROL AND SYSTEMSVOL. 10, NO. 1, MARCH 2005

a PLC needs to maintain the right control, predict the
consequences caused by the lack of input information to the
PLC, and also discover the proactive steps to prevent the
undesirable consequences. The run-time reconfiguration
strategies such as state aggregation, state disaggregation,
and feedback adjustment techniques, adjust the control
actions dynamically so that the controller can survive the
sudden changes of input channel availability and (if
possible at all) properly control the plant until the failed
input channels are recovered.

As mentioned in the preliminaries, the reconfiguration
strategies are implemented through the mega-controller

 and the feedback function 0(, , , ,)mY E g y YΘ = Φ% . When
the input channel status change (failure and repair of
channels), the mega-controller determines the right
feedback for the events. The right feedback in some cases
could generate a more restrictive controller until the
necessary input channels become available. We define a
new feedback function based on
the feedback function of the mega-controller.

1 : {0,Y X dcΦ × ×Σ→ 1, }

1

1 , (,) 1, (,)
(, ,) 0 , (,) 0, (,)

 , (,)

x y y e x e dc
y x e x y y e x e dc

dc x y y e dc

⎧ ∈ Φ = Φ ≠
⎪

Φ = ∈ Φ = Φ ≠⎨
⎪ ∈ Φ =⎩

%

%

%

,

and is not defined if 1(, ,)y x eΦ x y∉ . This function will
be used in next section.

6. IMPLEMENTATION OF OBSERVATION ANALYSIS ON

LLD

The mega-controller Θ has a feedback function that is

defined on its event set E which contains PLC input events
and failure/repair events of input channels. However this
function can not be implemented in an LLD, as the LLD
feedback must be based on its outputs. For this reason we
convert the mega-controller automaton to an extended
mega-controller automaton. Before discussing the
algorithm for this conversion, we would like to discuss an
issue related to the implementation of output commands of
LLD, that could arise during the construction of Θ . As
mentioned before, in the construction of Θ , we might
aggregate the states of X and generate some combined
states, we could disaggregate a combined state to smaller
combined or simple states, and we could adjust the
feedback rules (switch between 0 and 1 rules) in the
combined states to resolve the conflicts. During these
operations, we assure the resulting feedback function of the
combined states does not ask for any conflicting policy that
is, enabling and disabling an event at the same time.
However, guaranteeing a conflict free feedback rule does
not necessarily mean that the corresponding output
commands can be generated consistently. The following
proposition shows this fact.

Proposition 2. If a control strategy (state aggregation,
disaggregation and feedback adjustment) can be
implemented on the controller with FA model S and

feedback function Φ , it may not be implementable on the
LLD.

Proof: we show the proof by the contradiction.
Example 1. The following list is a partial representation of
the feedback function ′Φ of a control program.

Table 1. Partial representation of ′Φ .

 o1 o2

x1 1 0
x2 0 0
… … …

Suppose that , ,

, and
1

1() [1]
e

x dcΛ =
1

2() [1 1]
e

xΛ =

2 2
1 2() () [0]

e e
x x dcΛ = Λ = 1 2 2(,)f x e x= , then the

partial representation of Φ is shown in Table 2.

Table 2. Partial representation of Φ .
 e1 e2

x1 0 1
x2 0 dc
… … …

We see that for Φ , states 1x and 2x are conflict free,

therefore they can be combined, but for ′Φ , because
1 1(,) 1x o′Φ = but 2 1(,) 0x o′Φ = , this strategy is not

applicable on the LLD. ■
We notice that the observation analysis strategies are

designed based on Φ , however their implementation on
LLD is performed by the information from ′Φ . As shown
in the previous example, such implementation is not
always feasible. Therefore we might need to modify our
observation analysis strategies if they cannot be
implemented on the LLD. In the following, we present an
algebraic method to conduct the required modifications.

For a given row, say b, of the relationship matrix ()e xΛ ,
we say the output ko O∈ is reversely activated if (this
output is activated at state x and) or (the
output is deactivated at state x and).
Accordingly

,[()] 0e b kxΛ =

,[()] 1e b kxΛ =

ko O∈ is said to be positively activated if
(this output is activated and) or (this output
is deactivated and

,[()] 1e b kxΛ =

,[()] 0e b kxΛ =) or (,[()]e b kx dcΛ =).
The following rules in implementing feedback

adjustments of outputs are considered. If for event e∈Σ ,
y Y∈ and x X∈ , (,) 1x eΦ = but , then in

any of the row vectors in
1(, ,) 0y x eΦ =

()e xΛ at least one output has to
be reversely activated. If 1(, ,) 1y x eΦ = then all the outputs
of at least one row vector in ()e xΛ have to be positively
activated. We can see that there are multiple ways of
enabling event e at state x if there are multiple row vectors

Liu and Darabi: Reconfiguration of Ladder Logic Diagrams with Dynamic Input Sets 99

in ()e xΛ , and there might be multiple ways of disabling
event e at state x if there are multiple columns in ()e xΛ .

 In general, if a consistent feedback can be found for
each output, then this control strategy is implementable,
otherwise, it is not. Here we introduce a mathematical
model that can be used to find the values of outputs that
can support the new feedback function . The objective
of this model is to find at least one feasible solution.
Therefore if no feasible solution is found by solving the
model, it means no consistent set of output values exists
that can implement the new feedback function

1Φ

1Φ .
Based on the applied observation analysis strategies,

some of the states of the mega-controller are combined
states. Suppose that v be such a state. We recall that

 and v X⊆ 1v ≥ . Since the feedback rule for all states of
 that are not combined does not change, i.e. Θ

1(, ,) (,)x x e x eΦ = Φ for x X∈ and , we do not need
to consider the modification of the output commands for
these states. Therefore we apply the following model to the
combined states of Θ only. We assume that the new
feedback function is given for every

e∈Σ

1(, ,)v x eΦ x v∈ and
. The goal is to find the values of outputs

 such that the rules (enable, disable, dc) of
 can be implemented. We propose the following

integer programming (IP) model to solve this problem.

e∈Σ

1 2, , , no o oL

1(, ,)v x eΦ

Mathematical Model

1

Min
n

i
i

z
=
∑

Subject to
(1)

,

, , , ,
 1
[()]

1 { (1 2[()])([()])}

e b i

x e b e b i i e b i
i n

x dc

y M x z x
≤ ≤

Λ ≠

≥ − − Λ − Λ∑ , ,1 ()ex v e b r x∈ ∈Σ ≤ ≤

(2)

,

, ,
, ,1 ()

[()] 0

(1)
e

e b i

x e b i
x v e b r x

x

y M z
∈ ∈Σ ≤ ≤
Λ =

≤ −∑ 1 i n≤ ≤

(3)

,

, ,
, ,1 ()

[()] 1
e

e b i

x e b i
x v e b r x

x

y M
∈ ∈Σ ≤ ≤
Λ =

≤∑ z 1 i n≤ ≤

(4) , ,
1 ()

0
e

x e b
b r x

y
≤ ≤

=∑ x v∈ ,

 1 and (, ,) 0e v x e∈Σ Φ =

(5) , ,
1 ()

1
e

x e b
b r x

y
≤ ≤

≥∑ x v∈ ,

 1 and (, ,) 1e v x∈Σ Φ =e

, , 0,1x e by =
x v∈ , and 1 ()ee b∈Σ ≤ ≤ r x

0,1iz = 1 i n≤ ≤

Model Discussion: In this model, the definitions of
variables are:

iz =1(0) if output is activated (deactivated), 1io i n≤ ≤ .

, ,x e by =1 if all the output conditions of the row of thb
()e xΛ are satisfied, and , ,x e by =0 otherwise.
M is a large number. All other parameters have already

been defined. Constraint set (1) forces variable , ,x e by to

take value 1 if necessary. If all the conditions of the
row of

thb
()e xΛ are satisfied then the expression in {} is set

to 0 and therefore the right hand side of this constraint
becomes 1. Consequently , ,x e by is forced to take the value

of 1. If at least one of the conditions of the row of thb
()e xΛ is not satisfied then the related constraint allows

, ,x e by to be greater than −∞ . Constraint sets (2) and (3)
ensure that variables , ,x e by ’s are set to zero if necessary. If
output is decided to be activated (), then all the
rows in the relationship matrixes

io 1iz =
()e xΛ , e that require

 to be deactivated are not satisfied. Therefore the
corresponding

∈Σ

io

, ,x e by of these rows must be set to zero. This
is done by constraint set (3). Constraint set (4) has the
similar mechanism for the case that output is decided to
be deactivated (

io
0iz =). Constraint set (5) ensures that no

row in the relationship matrix ()e xΛ is satisfied if

1(, ,) 0v x eΦ = . This means that the selected configuration
of outputs disables event e. Constraint set (6) guarantees
that at least one set of conditions shown by ()e xΛ for
enabling event e is satisfied when . The
objective function does not have any specific role in the
formulation. The current function minimizes the number of
output activation commands that the PLC sends to the
plant after the reconfiguration policy is implemented.
However, one can use other objective functions depending
on the design goals. As far as we are concerned if the
constraints are satisfied, the correct implementation of

1(, ,) 1v x eΦ =

1(, ,)v x eΦ is guaranteed.

Example 2.
Suppose that 1 2{ , }u x x= , 1 2 3{ , , }e e eΣ = ,

1 2 3 4{ , , , }O o o o o= , and the output-event relation matrixes

are
1 1

1
() 1 1

1 0 1
e

dc dc dc
x dc dc

dc

⎡ ⎤
⎢ ⎥Λ = ⎢ ⎥
⎢ ⎥⎣ ⎦

,

2 1

0
()

1 0 1e

dc dc dc
x

dc
⎡ ⎤

Λ = ⎢ ⎥
⎣ ⎦

,

3 1

0
()

0 0e

dc dc dc
x

dc dc
⎡ ⎤

Λ = ⎢ ⎥
⎣ ⎦

,

[]
1 2() 0 1 0e x dcΛ = ,

[]
2 2() 1 0 1e x dcΛ = , and

[]
3 2() 1 1 0e x dcΛ = .

100 INTERNATIONAL JOURNAL OF INTELLIGENT CONTROL AND SYSTEMSVOL. 10, NO. 1, MARCH 2005

The new feedback function for states 1x and is 2x
(when combined in u) is given by ,

, and , ,
, and . The resulting IP

model is:

1 1 1(, ,) 1u x eΦ =
= =

=

4

)

1 1 2(, ,) 0u x eΦ 1 1 3(, ,) 1u x eΦ = 1 2 1(, ,) 1u x eΦ

1 2 2(, ,) 0u x eΦ = 1 2 3(, ,) 1u x eΦ

MIN 1 2 3z z z z+ + +
Subject to

1 1, ,1 11 (1x ey M z≥ − −

1 1, ,2 2 31 (1) (1x e)y M z M z≥ − − − −

1 1, ,3 1 2 31 (1) (1x e)y M z Mz M z≥ − − − − −

1 2, ,1 11x ey Mz≥ −

1 2, ,2 1 2 41 (1) (1x e)y M z Mz M z≥ − − − − −

1 3, ,1 21x ey Mz≥ −

1 3, ,2 3 41x ey Mz Mz≥ − −

2 1, ,1 2 3 41 (1)x ey Mz M z Mz≥ − − − −

2 2, ,1 1 2 41 (1) (1x e)y M z Mz M z≥ − − − − −

2 3, ,1 1 31 (1) (1x e)y M z M z≥ − − − −

1 1 1 1 1 2 2 2 2 3, ,1 , ,3 , ,2 , ,1 , ,1 1x e x e x e x e x ey y y y y M+ + + + ≤ z

1 2, ,1 1(1)x ey M z≤ −

1 1, ,2 2x ey Mz≤

1 1 1 2 1 3 2 1 2 2, ,3 , ,2 , ,1 , ,1 , ,1 2(1)x e x e x e x e x ey y y y y M z+ + + + ≤ −

1 1 1 1, ,2 , ,3 3x e x ey y M+ ≤ z

1 3, ,2 3(1)x ey M z≤ −

1 2 2 1, ,2 , ,1 4x e x ey y M+ ≤ z

1 3 2 1, ,2 , ,1 4(1)x e x ey y M z+ ≤ −

1 1 1 1 1 1, ,1 , ,2 , ,3 1x e x e x ey y y+ + ≥

1 2 1 2, ,1 , ,2 0x e x ey y+ =

1 3 1 3, ,1 , ,2 1x e x ey y+ ≥

2 1, ,1 1x ey ≥

2 2, ,1 0x ey =

2 3, ,1 1x ey ≥
All variables are 0 or 1.

The solution will be

1 1z = , , , , 2 0z = 3 1z = 4 0z =

1 1, ,1 1x ey = , , , ,
1 1, ,2 0x ey =

1 1, ,3 1x ey =
1 2, ,1 0x ey =

 , , ,
1 2, ,2 0x ey =

1 3, ,1 1x ey =
1 3, ,2 0x ey =

2 1, ,1 1x ey = , , .
2 2, ,1 0x ey =

2 3, ,1 1x ey =

Therefore, we must activate outputs 1 and 2, and
deactivate outputs 2 and 4.

 After deriving the feedback function for every
state of the mega-controller, we need to implement the
mega-controller strategies on the LLD. Since the mega-

controller is a finite automaton, its translation to LLD is
straightforward and can be done by one of the available
conversion methods in the literature [23]. However, the
LLD generated from Θ is not enough to implement a
correct reconfigurable control. We recall that in Section 3,
during our conversion from LLD to FA, we did not
consider the conversion of internal events of the PLC (such
as timer events, counter events, changes in the PLC
internal variables, etc.). We argued that these events cannot
directly affect the observation analysis and therefore need
not be included in the FA. Instead of these events, we
considered their effects on the output vector. We created
the virtual event ω that appeared on the FA model
whenever we observed a change in the output that was not
accompanied by changes in the inputs. While event ω was
appropriate to perform the observation analysis, this event
cannot be used in the LLD as it is not corresponding to any
specific input or output element. Furthermore, the original
LLD logic related to the internal components, that is not
directly reflected in the FA model, must be maintained to
manage the operations of internal components. In fact the
extended mega-controller only manages the necessary
output command modifications required to respond to the
loss of information due to the unobservability of input
events. However, the mega-controller cannot manage the
operations of internal components.

For this reason, in the final implementation, we propose
an LLD (called reconfigurable LLD) with two modules.
Module 1 is the original LLD. Module 2 is the LLD
generated from the extended mega-controller. Module 1
rungs are placed above the rungs of Module 2. In this case,
if there is a conflict between these two modules on the
activation/deactivation of outputs, the priority is given to
the decisions made by Module 2. The reason is that in
every PLC program scan, the rungs belong to Module 2 are
executed after the execution of the Module 1’s rungs.
Therefore after the update of output values in the output
image table by Module 1, if necessary, Module 2
overwrites some or all of these values. These values are
then sent to the output channels (output hardware) for
execution. Module 1 controls the original logic, including
the internal variables. Module 2 tracks the extended mega-
controller state and is responsible for digesting the input
channel failure and repair events. As long as, the state of
the mega-controller is not combined, Module 2 does not
affect the output decisions made by Module 1. We recall
that the IP model presented in this section is used to
determine the values of the outputs for the combined states.
For the individual states we do not have any modification
of the output commands, that is we use the output strategy
shown by ′Φ . When the mega-controller is set to a
combined state, the regular output decisions made by the
original LLD may no longer be acceptable. In this case the
output commands prescribed by the extended mega-
controller (determined by the IP model) are used.

Suppose that for every x X∈ of the finite
automaton 0(, , , ,)mS X f x X= Σ as defined in Section 3,

Liu and Darabi: Reconfiguration of Ladder Logic Diagrams with Dynamic Input Sets 101

1

2

(,)
(,)

(,)

x

n

x o
x o

o

x o

′Φ⎡ ⎤
⎢ ⎥′Φ⎢=
⎢
⎢ ⎥′Φ⎣ ⎦

M
⎥
⎥

 determines the feedback on the outputs.

We assume that the extended mega-controller
 is given (we use u instead y here to

prevent notation confusion). Define U as a subset of U
that contains those states of U that are combined. By the
construction procedure of Θ , we have

0(, , , ,)mU E g u UΘ =
′

0u U U ′∈ − . Also
. Suppose that is the associated output

command vector of u . The components of
U U X′− ⊆ uo%

U∈ uo are
determined from the solution of the IP model if u U ′∈ ,
and for u U we have U ′∈ − uo o=% u . By this definition we
have a slight violation in the definition of o , as o is
defined on X not U . However we notice that every
state in U has a member of X as its first component.
This member can be used while applying

U ′−
U ′−

o to the
elements of U . We assume that is the sets of
incoming events to state u. We also define (

U ′− ()uΔ

0e 0e E∉) as
the LLD initialization event. In the following, we present
the generation process of Module 2 from the extended
mega-controller.

Conversion from extended mega-controller to LLD
(Module2):
Begin

1- Create an initialization rung. The only input contact
for this rung is for event , which is normally open, and
the only output component is a latch coil for state .

0e

0u
2- For every create one rung as follows: u U U ′∈ −

2-1- For every and ()e u∈Δ e ω≠ , define a
branch that is the serial configuration of two
normally open contacts, one for event e and the other
for state v where g(v,e)=u.

2-2- For every and ()e u∈Δ e ω= , let g(v,e)=u
and execute step 2-2-1.

2-2-1- For every x X∈ that has contributed
in the construction of v (we recall that if v is a
combined state then several members of X have
contributed to the construction of v, and if v is
not a combined state then one member of X is
used in the construction of v.), and f(x,ω)=u,
create one branch that has a serial configuration
of one normally open contact for event e, one
normally open contact for every output that io
() 0x io = and () 1u io = , and one normally
closed contact for every output that io () 1x io =
and () 0u io = .

2-3- Connect all the created branches in steps 2-1
and 2-2 in parallel and place the generated branch
configuration as the input of the rung for state u.

2-4- Create one latch coil for state u and one
unlatch coil for every . Put all these coils
in a parallel structure in the output of the rung for u.

{ }v U u∈ −

3- For every u U ′∈ create one rung as follows:
3-1- For every ()e u∈Δ and e ω≠ , define a

branch that is the serial configuration of two
normally open contacts, one for event e and the other
for state v where (,)g v e u= .

3-2- For every ()e u∈Δ and ()e e uω= ∈Δ , let
(,)g v e u= and execute step 3-2-1.

3-2-1- For every x X∈ that has contributed
in the construction of v and for every x X′∈
that has been used in the construction of u, if

(,)f x w x′= , create one branch that has a serial
configuration of one normally open contact for
event e, one normally open contact for every
output that io () 0x io = and () 1x io ′ = , and one
normally closed contact for every output that io
() 1x io = and () 0x io ′ = .

3-3- Connect all the created branches in
steps 3-1 and 3-2 in parallel and place the
generated branch configuration as the input of
the rung for state u.

3-4- Create one latch coil for state u and one
unlatch coil for every . Create one
latch coil for every output that

{ }v U u∈ −

io () 1x io =% and
one unlatch coil for every output that io
() 0x io =% .

3-5- Put all the coils generated in step 3-4 in
a parallel structure in the output of the rung for
state u.

End.
We have shown the LLD conversion of the mega-

controller in the following example. This example includes
all the required steps from the beginning to constructing
the reconfigurable LLD.

7. ILLUSTRATIVE EXAMPLE

The system, shown in Fig. 4, includes a belt conveyor, a

roller conveyor, a filling machine, a scale, a printer and
two photoelectric sensors. The process is to fill the boxes
lined up on the belt conveyor, and to weigh the boxes by a
scale attached to the conveyor. The boxes are then
transported onto the roller conveyor where the production
related data are printed on the boxes. The boxes are fed
with equal distances through a feeder in the upstream
which is not considered as a plant component. Likewise,
the downstream subsystems, such as packaging and storage
have been excluded from the system under study. The
system’s operation is controlled by a PLC. The roller
conveyor runs all the times. The PLC does not control the
roller conveyor drive. The roller conveyor can only

102 INTERNATIONAL JOURNAL OF INTELLIGENT CONTROL AND SYSTEMSVOL. 10, NO. 1, MARCH 2005

accommodate one box due to its length limit. The
photoelectric sensor consists of a transmitter and a receiver.

When the “Ready” signal is received, the PLC activates
the belt conveyor motor to move the boxes forward. When
a box breaks the photoelectric beam installed at the filling
zone, the PLC stops the motor so that the box is right under
the filling nozzle. After a preset of 2 second, the filling
starts. When the filling is done, a “Filling_done” signal is
sent to the PLC by the filling machine. Then the scale is
activated to weigh the filled box. After the weight is
received, the PLC starts the motor again. Because the roller
conveyor runs at the same speed and direction as the belt
conveyor, the box is transported smoothly onto the roller
conveyor. When a box passes the photoelectric sensor
located in the center of the roller conveyor, the PLC
commands the printer to print on the box. This forms one
cycle of the process on an individual box. When the belt
conveyor transports the filled box onto the roller conveyor,
the subsequent box is also moved forward to the filling
zone. Simultaneously, two boxes are under process – one is
being filled and another is being printed. Fig. 5 shows the
original LLD. The descriptions of inputs and outputs in
this LLD are given Table 3.

Figure 6 shows the finite automata model of this LLD.
In converting the LLD to a finite automaton, input turn-on
and turn-off actions are considered as events. The event set
is, therefore, ={Ready+, Ready-, ps1+, ps1-, ps2+, ps2-, Σ

Fig. 4. Example system sketch.

Table 3. Inputs and output descriptions.

I/O Tag Name Physical Meaning

Ready System is ready for process.
ps1 Photoelectric sensor 1
ps2 Photoelectric sensor 2

Filling_done Filling is done.
Input

Weight_recd Weight is received by main
tMotor Motor drive actuator

Filling Filling machine actuator
Weighing Scale actuator

Output

Print Printer actuator

0
Ready

L
Motor

1
ps1

U
Motor

EN
DN

Timer On Delay
Timer T1
Preset 2000
Accum 0

TON

2
T1.DN

L
Filling

3

e
e
e
e
e
e
e

Filling_done

U
Filling

L
Weighing

4

e
e
e
e
e
e
e

weight_recd

U
Weighing

L
Motor

5

e
e
e
e

ps2

Print

Fig. 5. Ladder logic diagram of the example system.

Fig. 6. Converted FA model.

Filling_done+, Filling_done-, Weight_recd+,
Weight_recd-, ω }. Another product of the conversion is
the feedback function ′Φ , given in Table 4.

To translate the feedback function ′Φ to Φ , the
relation between events and outputs is needed, which is
listed in Table 5. Applying the algorithm discussed in
Section 4, the feedback function Φ is obtained. The result
is shown in Table 6.

In states 4, 10, 11 and 12, event ps2 is not controllable.
The reason is that at those states, there is no combination
of outputs to enable or disable this event. Therefore, from
the PLC point of view, it is not controllable.

The converted FA model S and the feedback function
Φ form an FA supervisory controller. We then perform
the observation analysis on it. Suppose that the status of
input channels (input observation means) is modeled as
working, represented by letter O, and failed (including the
case that the communication is significantly delayed),

Liu and Darabi: Reconfiguration of Ladder Logic Diagrams with Dynamic Input Sets 103

}Table 4. Feedback function : {1,0,X O d′Φ × → c .
Events No. States

Motor filling weighing Printing
1 00000_0000 0 0 0 0
2 10000_1000 1 0 0 0
3 00000_1000 1 0 0 0
4 01000_0000 0 0 0 0
5 01000_0100 0 1 0 0
6 01010_0010 0 0 1 0
7 01000_0010 0 0 1 0
8 01001_1000 1 0 0 0
9 01000_1000 1 0 0 0

10 01100_0001 0 0 0 1
11 01100_0000 0 0 0 0
12 01100_0100 0 1 0 0

Table 5. Event-Output relationships.

Event e eΛ

Ready+ Does not exist in any state
Ready- Does not exist in any state
ps1+ [1 dc dc dc] at all the states
ps1- [1 dc dc dc] at all the states

ps2+
[1 dc dc dc] at all the states expect

state No. 4, 10, 11, 12 where it does
not exist

ps2-
[1 dc dc dc] at all the states expect

state No. 4, 10, 11, 12 where it does
not exist

Filling_done+ [dc 1 dc dc] at all the states
Filling_done- Does not exist in any state
Weight_recd+ [dc dc 1 dc] at all the states
Weight_recd- Does not exist in any state

represented by letter X. The states in S are renamed by its
index in Tables 4 or 6. In the initial state, state 1, we
assume that all the input channels are working properly, so
their status vector is “OOOOO” where each digit stands for
a status of an input channel in the order listed in Table 4.

In the extended controller model Θ , all the possible
statuses of each input channel are considered. Figure 7
shows a part of this model. Suppose that in state 1, the
channel for the input “Ready” is failed, which makes event
“Ready+” and “Ready-” unobservable. By the observation
analysis, we find that there are conflicting control actions
on the event “ps1+” in states 1 and 3. Therefore, the
feedback adjustment strategy is applied, and the new
feedback is . Then we apply the state
aggregation strategy and accordingly states 1-3 are
combined, and we call the new state “123”. After solving
the IP model of the previous section for states 1, 2, and 3,

1(123,3, 1) 0psΦ +

Table 6. Feedback function : {1,0, }X dcΦ ×Σ→ .

No. States Ready+ ready- ps1+ ps1- ps2+
1 00000_0000 1 dc 0 0 0
2 10000_1000 dc 1 dc dc dc
3 00000_1000 dc dc 1 dc dc
4 01000_0000 dc dc 0 0 1
5 01000_0100 dc dc 0 0 0
6 01010_0010 dc dc 0 0 0
7 01000_0010 dc dc 0 0 0
8 01001_1000 dc dc dc dc dc
9 01000_1000 dc dc dc 1 dc

10 01100_0001 dc dc 0 0 dc
11 01000_0000 dc dc 0 0 dc
12 01100_0100 dc dc 0 0 dc

No. States ps2-
Filling
_done+

Filling
_done-

Weight
_recd+

Weight
_recd-

1 00000_0000 0 0 dc 0 dc
2 10000_1000 dc 0 dc 0 dc
3 00000_1000 dc 0 dc 0 dc
4 01000_0000 dc 0 dc 0 dc
5 01000_0100 0 1 dc 0 dc
6 01010_0010 0 0 1 0 dc
7 01000_0010 0 0 dc 1 dc
8 01001_1000 dc 0 dc 0 1
9 01000_1000 dc 0 dc 0 dc

10 01100_0001 dc 0 dc 0 dc
11 01000_0000 dc 0 dc 0 dc
12 01100_0100 1 1 dc 0 dc

Fig. 7: Partial model of extended controller . Θ

the relationship matrices, and , we obtain (the IP model
is not shown here) the following output commands: Motor
is deactivated, Filling is deactivated, Weighing is
deactivated, and Printing is deactivated.

1Φ

The physical explanation of this change is that in the
plant events “Ready+” and “Ready-” may have or have not
happened, and thus the current state could be either of
states 1, 2 or 3. But the PLC is unaware of the occurrence
of those events. As a result, it controls the conveyor system
according to the feedback in state 1 even though the correct
control instruction is supposed to be the feedback in state 2
or 3. In this case, we need to find a compromised control
feedback suitable for all the three states, 1, 2 and 3. The

=

104 INTERNATIONAL JOURNAL OF INTELLIGENT CONTROL AND SYSTEMSVOL. 10, NO. 1, MARCH 2005

new control actions on outputs in states 2 and 3 are
consistent with the current ones in state 1. So there is no
need to change the logic of LLD to accommodate the
change because the PLC program will not be set to states 2
and 3 until the “ps1” input channel is recovered. But in
state 3, if the input channel for “ps1” is failed, the new
feedback disables “ps1+” which is in conflict with the
feedback . Therefore, the logic of PLC has to be.
Similarly in state 5, for the case that “Filling_done” input
channel is failed, the changes are reflected in the extended
mega-controller. After applying the conversion algorithm
of Section 6, to the extended mega-controller, we generate
the second module of the reconfigurable LLD. This
module is partially shown in Fig. 8. By putting the first
module (shown in Fig. 5) and the second module after that,
we can generate the reconfigurable LLD.

Φ

10
u3_00000

ps1

U
u3_00000

L
u4_00000

11
u3_00000

B_ps1

U
u3_00000

L
u34_0x000

U
Motor

12
u4_00000

Filling

u567_0x000

R_Filling_done

U
u4_00000

U
u567_0x000

L
u5_00000

13
u5_00000

B_Filling_done

U
u5_00000

L
u567_000x0

U
Filling

14
u5_00000

Fillling_done

U
u5_00000

L
u6_00000

15

e
e
e
e
e
e
e

u6_00000

/
Fillling_done

U
u6_00000

L
u7_00000

(End)

0
Ready

L
Motor

1
ps1

U
Motor

EN
DN

Timer On Delay
Timer T1
Preset 2000
Accum 0

TON

2
T1.DN

L
Filling

3
Filling_done

U
Filling

L
Weighing

4
weight_recd

U
Weighing

L
Motor

5
ps2

Print

6
u123_x0000

R_Ready

U
u123_x0000

L
u1_00000

7

e
e
e
e
e
e
e

u1_00000

Ready

U
u1_00000

L
u2_00000

8

e
e
e
e
e
e
e

u1_00000

B_Ready

U
u1_00000

L
u123_x0000

9

e
e
e
e
e
e
e
e
e
e

u2_00000

/
Ready

u34_0x000

R_ps1

U
u2_00000

U
u34_0x000

L
u3_00000

Fig. 8. Reconfigurable LLD.

8. CONCLUSION

In this paper, we introduce a framework for converting

a traditional LLD to a reconfigurable LLD. The
reconfigurable LLD modifies the control of its plant when
the means reporting the plant events to the PLC fail. It is
shown that the reconfigurable LLD can continue a proper
control of the plant under conditions that the traditional
LLD cannot. Partial observation theory is used in the
construction of the new LLD.

One future research direction established by this work is
to develop some efficient techniques to obtain the
information needed by the presented framework. For
example how one can efficiently derive the event-output
relationships of a given controller, can be a research
problem. Another research challenge is to implement the
proposed method for large scale systems (LLD with
thousands of rungs) and evaluate its effectiveness. Also
modifying the discussed methods for the case of
continuous PLC input and/or outputs is an open research
problem.

Liu and Darabi: Reconfiguration of Ladder Logic Diagrams with Dynamic Input Sets 105

REFERENCES
[1] P. J. Ramadge and W. M. Wonham, “Supervisory control of a class

of discrete event Processes”, SIAM Journal of Control and
Optimization, vol. 25, No.1, pp. 206-230, 1987.

[2] R. Cieslak, C. Desclaux, A. S. Fawa and P. Varaiya, “Supervisory
control of discrete-event processes with partial observations”, IEEE
Transactions on Automatic Control, vol. 33, no. 3, pp. 249-260,
1988.

[3] F. Lin and W. M. Wonham, “On observability of discrete event
systems”, Information Sciences, vol. 44, no. 3, pp. 173-198, 1988.

[4] H. Darabi, M. A. Jafari and A. L. Buczak, “A control switching
theory for supervisory control of discrete event systems”, IEEE
Transactions on Robotics and Automation, vol. 19, no.1, pp. 131-
137, 2003.

[5] J. Liu and H. Darabi, “Control Reconfiguration of Discrete Event
Systems Controllers with Partial Observation”, IEEE Transactions
on Systems, Man and Cybernetics, Part B, Vol. 34, No. 6, pp. 2262-
2272, 2004.

[6] M. Fabian, A. Hellgren, “PLC-based Implementation of Supervisory
Control for Discrete Event Systems”, Proceedings of the 37the IEEE
conference on Decision & Control, Tampa, Florida, USA, Dec.
1998.

[7] J. Zaytoon, “Specification and Desgin of Logic Controllers for
Automated Manufacturing Systems”, Robotics & Computer-
Integrated Manufacturing, Vol. 12, No. 4, pp. 353-366, 1996.

[8] L. Lenart, “Formal Analysis of Existing Control Software in Cyclic
Closed Production Line”, 2001 IEEE/ASME International
Conference on Advanced Intelligent Mechatronics Proceedings 8-12,
Jul. 2001.

[9] K. Venkatesh, and M.C. Zhou and R. J. Caudill, “Comparing ladder
logic diagrams and Petri nets for sequence controller design through
a discrete manufacturing system”, IEEE Transactions on Industrial
Electronics, Vol. 41 Issue 6, pp. 611-619, Dec. 1994.

[10] M.C. Zhou, and E. Twiss, “Design of industrial automated systems
via relay ladder logic programming and Petri nets”, IEEE
Transactions on Systems, Man, and Cybernetics, Part C:
Applications and Reviews, Vol. 28 Issue 1, Feb. pp. 137-150, 1998.

[11] S.C. Lauzon, J.K. Mills and B. Benhabib, “An Implementation
Methodology for the Supervisory Controller for Flexible
Manufacturing Workcells”, SME Journal of Manufacturing Systems,
Vol. 16, No.2, pp. 91-101, 1997.

[12] G. B. Lee, J. S. Lee, “The State Equation of Petri Net for the LD
Program”, 2000 IEEE International Conference on Systems, Man,
and Cybernetics, Vol. 4, 2000.

[13] P.J.G. Ramadge, and W.M. Wonham, “The control of discrete event
systems”, Proc. IEEE. 77: 81 – 98, 1989.

[14] U.A. Buy and H. Darabi, “Deadline-enforcing supervisory control
for time Petri nets”, IEEE Multiconference on Computational
Engineering in Systems Applications, Lille, France, 2003.

[15] Ugo Buy and Houshang Darabi. Sidestepping verification
complexity with supervisory control. The Monterey Workshop:
Software Engineering of Embedded Systems, September 2003.

[16] J. Desel and J. Esparza, “Free Choice Petri Nets”, Cambridge,
Cambridge Univ. Press, 1995.

[17] T. Murata, “Petri nets: Properties, analysis, and applications”, Proc.
IEEE. 77, pp. 541–580, 1989.

[18] J.L. Peterson, “Petri Net Theory and the Modeling of Systems”,
Engelwood Cliffs, NJ, Prentice-Hall, 1981.

[19] W. Reisig, “Petri Nets”, Berlin, Springer-Verlag, 1985.
[20] M.C. Zhou and F. DiCesare, “Petri Net Synthesis for Discrete Event

Control of Manufacturing Systems”, Amsterdam, Kluwer, 1993.
[21] L. E. Holloway and B. H. Krogh, “Synthesis of feedback control

logic for a class of controlled Petri nets”, IEEE Trans. Automat.
Contr. 35: 514–523, 1990.

[22] B. A. Brandin, “The Real-Time Supervisory Control of an
Experimental Manufacturing Cell”, IEEE Transactions on Robotics
and Automation, Vol. 12, No.1, Feb. 1996.

[23] T. O. Boucher, Computer Automation in Manufacturing Systems,
Chapman & Hall, London, 1996.

[24] A. Hellgren, M. Fabian and B. Lennartson, “Synchronised
Execution of Discrete Event Models Using Sequential Function

Charts”, Proceedings of the 38th Conference on Decision & Control,
Phoenix, Arizona, Dec. 1999.

[25] J. Liu and H. Darabi, “Ladder logic implementation of Ramadge-
Wonham supervisory controller”, Proceedings of Sixth International
Workshop on Discrete Event Systems (WODES), pp. 383 -389,
2002.

[26] Darabi, H., Sampath, R., and Naylor, D. “PLC formal control
methodologies: Does academia supply what industry demands?”
ISA TECH/EXPO Technology Update Conference Proceedings, v
422, pp. 131-143, 2002.

Jing Liu (S’04) received the B.S. degree
from Hebei University of Technology,
Tianjin, China, the M.S. degree from
Beijing University of Posts and
Telecommunications, Beijing, China. She
is currently working towards the Ph.D.
degree in industrial engineering at
University of Illinois at Chicago.

Her research interests include formal
methods, supervisory control, recon-

figuration of discrete-event systems, and their applications in
manufacturing.

She is a student member of IEEE, Honor Society of Phi Kappa
Phi, and Institute of Industrial Engineers.

Houshang Darabi is currently an
Assistant Professor with the Department
of Mechanical and Industrial Engineering,
University of Illinois at Chicago. He
received the Ph.D. degree in industrial
and systems engineering from Rutgers
University, New Brunswick, NJ, in 2000.

His research interests include the
application of discrete-event systems control theory in modeling
and analysis of service and manufacturing systems, computer-
integrated manufacturing, supply chain networks, and
manufacturing information systems. His research has been
supported by the National Science Foundation, the Department of
Commerce, Motorola Inc., and several other agencies. He has
published in different prestigious journals and has presented his
research in national and international conferences. Dr. Darabi is a
senior member of the Institute of Industrial Engineers (IIE), a
member of the Instrumentation, Systems and Automation Society
(ISA), Institute of Electrical and Electronics Engineers (IEEE),
and the Institute for Operations Research and the Management
Sciences (INFORMS).

106 INTERNATIONAL JOURNAL OF INTELLIGENT CONTROL AND SYSTEMSVOL. 10, NO. 1, MARCH 2005

	1. Introduction
	2. Preliminaries
	3. Conversion from LLD to FA
	4. Translation from to
	5. Observation Analysis on FA Controller
	6. Implementation of Observation Analysis on LLD
	7. Illustrative Example
	8. Conclusion
	References

