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Abstract - This paper addresses the design process of 
programmable logic controller (PLC) ladder logic diagram (LLD) 
when the PLC input channels are subject to failure/repair. Given a 
traditional LLD and its feasible behavior, a finite automata (FA) 
supervisory control model of the LLD is developed. Partial 
observation theory is used to extend the generated FA model to a 
mega-controller. The mega-controller can modify (reconfigure) the 
control strategies when the FA events are partially observed. The 
mega-controller model is then converted to an LLD that is tolerable 
with respect to the availability of the PLC input channels. The 
developed framework can be used in industrial systems that PLCs 
have many input channels and these input data to PLC could be 
unavailable temporarily due to communication network congestion, 
sensor failure, disconnected input devices, etc. We illustrate the 
proposed theory by an example.  

 
Index Terms—Control Reconfiguration, Finite Automata Analysis, 

and Ladder Logic Diagram. 
 

1. INTRODUCTION 
 
Programmable Logic Controllers (PLC) are widely used 

in shop floor automation, and Ladder Logic Diagram (LLD) 
is the most popular programming language of PLCs. An 
LLD based program continuously reads the state of the 
system that it is controlling. The system state is determined 
by the plant information that the (LLD based) controller 
receives through its input channels. In the current design 
process of LLD, it is assumed that these channels are 
always available and that they can properly report their 
corresponding information to the controller. In practice, 
this assumption is not necessarily true. In fact, when the 
number of plant automated components increases, it is 
likely that the information regarding the states of these 
components is partially reported to the controller. In this 
case we say that the controller has a partial observation of 
its plant (i.e. controlled system). Reasons for incomplete 
observation include but not limited to: sensor failure, 
communication line congestions and delays, long scan time, 
low analog to digital conversion precision of the PLC input 
module in collecting the input signals, power outage in the 
input module layer, excessive input channels, and the 
failure of human in triggering PLC online commands on 
time. This paper intends to extend the traditional existing 
Ladder Logic Diagram (LLD) to a reconfigurable LLD 
which is capable of adapting its logic on the fly according 
to observable plant information. To achieve this goal, a 
formal method for observation analysis of LLD is essential. 

Theoretically speaking, the availability of observation 
means can be considered as a partial observation problem. 
For the systems modeled by Finite automata (FA), partial 

observation problem was investigated by [2, 3] originally. 
These works determined the conditions under which a 
given set of observation means can be used for a proper 
control. However, these works had a fixed view of the 
observation means and the proposed algorithms could not 
be applied in situations that the availability of means was 
changing. Reference [4] presented a switching theory to 
dynamically reconfigure a DES controller under dynamic 
partial observation. Reference [5] gave a broader view of 
this problem by developing new dynamic observation 
theory-finite time observation policies, and reconfiguration 
strategies.  This work introduced more tolerable control 
policies compared to the other works in the literature. The 
results derived in [5] provide the theoretical guidelines of 
the research presented in the current paper. However, the 
theory of [5] cannot be directly applied to the LLD design. 
The following comparison of LLD and finite automata 
controllers presents the main reason behind this claim: 

1. The FA controller is a permissive controller, i.e., it 
allows events to happen but it does not force them. 
However, LLD controller forces the output to activate or 
de-activate.  

2. For the FA controller, in one unit of time, at most 
one event can occur. But in LLD, in one scan time (one 
unit of time), multiple input and output changes may 
happen. 

3. Usually, there is not a one-to-one relationship 
between FA controller events and PLC I/O signal changes. 
Therefore, there might be a need to translate PLC input 
signals to FA controller events and the controller feedback 
to PLC output signals.  

4. The feedback of the FA controller applies to the 
events themselves, but the LLD is translated to the control 
actions only on the outputs, not the inputs. The outputs can 
affect the plant behavior which in return determines the 
value of the inputs. 

Studies have been carried out on the analysis and 
verification of LLDs [6-12]. The most popular approach 
proposed in these works is to develop a controller with one 
of the formal controller construction techniques, such as 
Finite Automata [1, 13] and Petri nets [14-22], and convert 
the resulting model to LLD. The constructed controller is 
first analyzed and then a conversion procedure generates 
an equivalent LLD of the controller. Therefore, the final 
LLD is guaranteed to carry the same control properties as 
of the constructed model. The FA controller construction 
technique can generate a maximally permissive controller 
from a DES plant and control specifications. The 
conversion from an FA controller to LLD was addressed 
by [6, 22], which is basically the conversion of a state-
transition diagram to LLD [6, 23-24]. While this 
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conversion is algorithmically true, the resulting LLD is 
usually not implementable, i.e., it cannot be directly run on 
PLC. The work [25] converts an FA controller to a ladder 
logic diagram while assuring its implementability as a PLC 
program. However, these approaches have been rarely used 
by practitioners [26]. In fact none of these researches has 
considered a real-world model of LLD and they are all 
limited to a simplified LLD. This has prevented the 
industry from using their techniques.  

This paper intends to integrate the reconfigurability into 
the design of LLDs. It presents the observation analysis 
theory that can systematically and comprehensively 
analyze the situations caused by the unavailability of input 
information, and proposes a proactive measure to prevent 
out-of-control states. Conversion algorithms are proposed 
in order to bridge the gap between LLD and FA controllers 
as mentioned above.  

Figure 1 shows the outline of the steps introduced in 
this paper: (1) a given LLD is first converted to a finite 
automaton with and a special feedback function ′Φ ; (2) 
the feedback function  is then translated to a regular 
(Ramadge-Wonham) feedback function, say 

′Φ
Φ ; (3) the 

observation analysis is performed on the FA controller and 
the result is a new controller called mega-controller; (4) the 
implementability of the mega-controller is verified by 
solving an Integer Linear Programming (ILP) model and 
an implementable mega-controller, called extended mega-
controller is generated; (5) the extended mega-controller is 
converted to an LLD, called reconfigurable LLD, that 
integrates the reconfigurability to the original LLD. The 
paper is organized as follows. Section 2 reviews the theory 
concerning supervisory control based on finite automata. It 
also reviews the existing works on observation analysis 
and control reconfiguration of discrete event systems 
(DES). Section 3 presents the translation from a LLD to a 
finite automaton and the generation of feedback on outputs. 
Section 4 addresses the translation from feedback on 
outputs to feedback on events. Section 5 discusses the 
observation analysis on the FA controller. Section 6 

discusses the reconfigurable LLD implementation. Section 
7 presents an illustrative example. Concluding remarks and 
potential future research issues are given in Section 8.  
 

2. PRELIMINARIES 
 

According to [1], a DES can be modeled by a finite 
automaton 0( , , , , )mG Q q Qδ= Σ , where Q is the set of 
states, Σ  is the finite set of events (which can be 
partitioned into two disjoint subsets, controllable events set 

cΣ ,  and uncontrollable events set ), ucΣ : Q Qδ ×Σ → is 
the transition functions, q0 is the initial state, and  
is the set of marked states. Suppose that  is the set of 
finite length strings of 

mQ Q⊆
*Σ

Σ . The extension of δ  on *Σ  is 
defined as ( , ) ( ( , ), )q s q sδ σ δ σδ=  where *sσ ∈Σ .   G is 

said to be blocking if mL ⊂ L , and nonblocking if mL L= , 
where  is the language 

generated by G and 

*
0{ : ( , ) is defined}L s q sδ= ∈Σ

*{ :  such that  andmL s t st L= ∃ ∈Σ ∈  

0( , ) }mq st Qδ ∈ . G models the uncontrolled plant. The 
supervisor S (or controller) interacts with G in a closed 
loop manner (Fig. 2), and it assures that the plant does not 
violate a given set of control specifications. Observation 
means report the occurrence of events in G to S. 
Mathematically, ( , )S= ΦS , where  
is a deterministic automaton with state set X, initial state x

0( , , , , )mS X f x X= Σ

0, 
a marked subset mX X⊆ , and transition function 

:f X X×Σ → ; : {1,0, }X dcΦ ×Σ→  is the feedback 
function. Similar to the extension of δ  on the strings of 

*Σ , function f can also be extended on these strings. 
( , ) 1x σΦ =  (0) indicates that the control action at state x  

is to enable (disable) event σ . “dc” is an abbreviation for 
“don’t care”, which implies that the enabling or disabling 
of σ  at x doesn’t affect the behavior of G.  : 2X ΣΓ →  is 
the active event function, and is defined as 

( ) { : ( , )x e f x eΓ =  is defined} for all x X∈ . In other 
words, ( )xΓ  includes all the events that are enabled by S 
at state x . The controlled plant language, so called 
coupled language, is shown by ( / )K L G= S .  

Assume that for every event there is an observation 
means to report its occurrence to the controller, repair and 
failure of the observation means are modeled by two sets 
of events, R and B, respectively. Suppose that b Bσ ∈ , 
r Rσ ∈  are the breakdown and repair events of the 
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Output-Event  
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Controller (S) 
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observation means that reports the occurrence of event 
σ ∈Σ . We use the notation _y X SS=  to show a state of 
a mega-controller. In this notation X X⊆  and 

. Here 
1 2

( , , , , ,
i

SS ss ss ss ssσ σ σ σ= L L

 

)
n i

ssσ  is the 

observation means status of event iσ  in 

1 2{ , , , , , }i nσ σ σ σΣ = L L , and 
i

ssσ = 0(1) if the 

observation means reporting event iσ  is failed (working). 
Given the maximally permissive controller ( , )S= ΦS  

(recall that ), the mega-controller 
automaton  can be constructed as 
follows: 

0( , , , , )mS X f x X= Σ

0( , , , , )mY E g y YΘ =

1- Let , E B R= ΣU U _y X SS= , 0 0 _11 1y x= L , 
 and {}Y = 0{ }A y= . Let . Define 0y y= 0{ }mY y= . 

2- For every σ ∈Σ , define the feedback function as: 

0, if  : ( , ) 0;

if  : ( , ) 1 
( , ) 1,

and  : ( , ) 0;

, otherwise.

x X x

x X x
y

x X x

dc

σ

σ
σ

σ

⎧
∃ ∈ Φ =⎪

⎪
⎪ ∃ ∈ Φ =⎪Φ = ⎨

′ ′∃ ∈ Φ =⎪
⎪
⎪
⎪⎩

%  

 and 

. 

1, if 1;
( , )

, otherwise.
ss

y b
dc

σ
σ

=⎧
Φ = ⎨

⎩
%

1, if 0;
( , )

, otherwise.
ss

y r
dc

σ
σ

=⎧
Φ = ⎨

⎩
%

3- For every ( )
x X

xσ
∈

∈ ΓU  such that ,  1ssσ =

3-1 Create the relationship ( , ) 'g y yσ =  where y′  is 
calculated by the following steps: 

3-1-1 1 { ( , ) | X, ( , ) is defined.}X f x x f xσ σ= ∈ ; 

3-1-2 {2 1( , ) | ,X f x t x X= ∈      

 }*{ |  and 0} , ( , ) is defined. ;et e e ss f x t= ∈Σ =

3-1-3 1 2'X X X= U ,  and 'SS SS= ' : '_ 'y X SS= ; 
3-2  If  is neither in Y nor in A, add it to A. y′

4- For every σ ∈Σ  such that ,  0ssσ =
4-1 Create the relationship ( , ) 'g y b yσ =  where 

' _ ' , y X SS′= '

0, if '
,

, otherwise
ss

ssσ
σ

σ σ=⎧
= ⎨
⎩

 and 

{
}*

' ( , ) | ,

{ { |  , 0 or ' }

X f x t x X

t ssσσ σ σ σ′

= ∈

′ ′= ∈Σ = = .
 

4-2 If  is neither in Y nor in A, add it to A.  y′
5- For every σ ∈Σ  such that ,  1ssσ =

5-1 Create the relationship ( , ) 'g y yσ =  where 
( , ) 'g y r yσ =  , ' : _ 'y X SS=  and 

'

1, if ' ;
.

, otherwise
ss

ssσ
σ

σ σ=⎧
= ⎨
⎩

 If  is not in Y, add 

that to Y; 

y′

5-2  If y′  is neither in Y nor in A, add it to A.  
6- Remove y from A. Add y to Y. If A is empty then go 

to step 7, otherwise select one of the elements of A, 
call it y and go to step 2. 

7- Revise the generated automaton by performing a 
trimming process (see [1] for the details of the 
trimming process) and consider  
to be the revised automaton. 

0( , , , , )mY E g y YΘ =

In short, in the trimming process all the states in Y that 
are dangling (no string of events exists from them to ) 
are removed. The removal is done by revising the feedback 
function

0y

′Φ  (disabling appropriate controllable events) in 
non-dangling states of Y such that the strings that lead to 
dangling states are disabled.  

 
3. CONVERSION FROM LLD TO FA 

 
The objective of this section is to introduce a method 

for converting a given LLD to a finite automaton while 
preserving the behavioral properties of the LLD. This 
conversion is labeled by Algorithm 1 in Fig. 1. The 
resulting FA is used to design a fault tolerant control policy 
that increases the amount of time that the PLC, with partial 
observation of the plant events, can properly control the 
plant. We assume that the following information is known 
before the conversion proceeds: a) PLC outputs; b) PLC 
inputs, and c) The complete sequence of possible input 
values and their corresponding output 
activation/deactivation commands generated by PLC per 
scan. 

 To convert the LLD to an FA model, we need to 
capture the behavior of the LLD. The PLC communicates 
with the plant through input and output channels. The 
change of input and output status reflects the control 
activities of the PLC, and also reflects the state of the 
system. For small systems with less than one hundred of 
rungs of LLD, the input signals are manually entered into 
the LLD in their order of occurrence and the resulting 
outputs are recorded. For the complex systems, with the 
aid of a PLC simulator (emulator), the input and output 
status is written into a database at each scan. 

We assume that the inputs and outputs of PLC are 
Boolean. Define 1 2{ , , , , , }k mI i i i i= L L  as the set of inputs, 
where  is the  input, and m is the total number of 
inputs. Similarly let 

ki
thk

1 2{ , , , , , }kO o o o on= L L  be the set of 
outputs, where  is the output, and n is the total 
number of outputs. Also define 

ko thk
IO
jV  as the input and output 

status vector at the jth scan with size of ( ) , m n+ [0, ]j N∈  
and N is the total number of scans recorded. We assume 
that the selected N scans cover all the control paths that are 
executed by the LLD when it controls the plant. In fact 
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IO
jV  is a binary vector in which each digit shows the status 

of an input or output. Let I
jV ( O

jV ) show the input (output) 

status vector at the jth scan with size of m (n). I
jV ( O

jV )  is a 
binary vector in which each digit shows the status of an 
input (output). 

The converted FA is shown by . 
The input’s status changes (from on to off, or from off to 
on) are considered as events, and thus the possible events 
are  where  is the off-to-
on (from 0 to 1) event of the k

0( , , , , )mS X f x X= Σ

1 1 2 2{ , , , , , , , , , }k k m mi i i i i i i i+ − + − + − + −L L ki
+

th input and  is the on-to-
off (from 1 to 0) event of the k

ki
−

th input. Not the events listed 
above may be included in the event set .  Define (  as 
the k

Σ )kV
th element of vector V . Before discussing the 

conversion algorithm, we introduce the following two 
functions. Binary representation of a vector V , shown by 

( )Vβ , is a binary number where content of its kth position 
bit equals to the value of the kth element of V . Indexes of 
non-zero elements of a vector V shown by the set 0 ( )Ind V  . 
 
Conversion Algorithm 1: Conversion from LLD to FA 
Begin 

1. Let 0 0( )IOx Vβ= , , Σ = ∅ 0{ }X x= , mX = ∅ , and 
.  1j =

2. Compare IO
jV  with 1

IO
jV − ,  

a) If IO
jV = 1

IO
jV − , go to step 4. 

b) If I
jV  is different from 1

I
jV − , add  to( IO

jVβ ) X , 

and let 1
I I I
j j jV V V −Δ = − , 

For  to m 1k =
If , add  to ( ) 1I

j k
VΔ = ki

+ Σ , let 

( )1( ), ( )IO I
j k jf V i Vβ β+
− = O ; 

If , add  to ( ) 1I
j k

VΔ = − ki
− Σ , let 

( )1( ), ( )IO I
j k jf V i Vβ β−
− = O . 

End For 
c) Otherwise, add ω  to ,  toΣ ( IO

jVβ ) X , let 

( )1( ), ( )IO I
j jf V Vβ ω β− = O .  

3. The feedback function is defined as  

( )
( )
( )

1 if 1
( ),

0 if 0

O
j kIO

j k O
j k

V
V o

V
β

⎧ =⎪′Φ = ⎨
=⎪⎩

  . [1, ]k n∀ ∈

4. Let . If  go to step 2, otherwise go to 
step 5. 

1j j= + j N≤

5. Let mX X= .  
End. 

From the algorithm steps it is trivial that the maximum 
number of FA states generated by the algorithm is ( )2 m n+  , 
that is ( )2 m nX +≤ . 

Proposition 1. If the selected scans cover all possible 
control paths that the PLC LLD can experience, the 
converted FA with the feedback function ′Φ  and the LLD 
both generate the same sequences of input and output 
vectors.  

Proof: Since the selected scans cover all possible 
control paths that the PLC LLD can experience, by the 
algorithm construction, starting from the initial state, for 
every change in the input vector, both the LLD and FA 
yield the same output vectors. Also event e exists in the 
LLD control path if and only if it exists in the FA control 
path (recall that event e is a member of  

1 1 2 2{ , , , , , , , , , , }k k m mi i i i i i i i ω+ − + − + − + −L L  that is generated in the 
FA based on its existence in the LLD). Taking into account 
that event ω  represents all the changes in the outputs that 
are accompanied by no input changes in the same scan,  
and given the fact that the PLC output information are 
included in the state information of the FA model, the two 
LLD and FA controllers follow the same sequences of  
input and output vectors.■ 

In the following we discuss some the issues related to 
the above algorithm. First issue is the concept of virtual 
event. We have created a virtual event, shown by ω , to 
model the changes of the internal relays which cause the 
output changes (while no input changes occur). Because 
the change of internal relay status is always observable by 
the PLC, we can actually ignore the event ω  in the 
observation analysis. The second issue is the marked state 
set of the generated finite automaton. Without loss of 
generality we set 0{ }mX x= , i.e. we assume a cyclic 
behavior for the controlled plant.  The third issue is the 
feedback function : {X O 1,0}′Φ × →  that is applied to the 
output set O . This function does not satisfy the 
requirements of supervisory control theory as it is not 
defined based on the FA events (that are PLC input 
changes and event ω ). In fact, we need a feedback 
function in form of : {1,0, }X dcΦ ×Σ →  where 

1 1 2 2,i i{ , , , , , , , , , }k k m mi i i i i i ω+ − + − + −Σ ⊆ L L+ − . In the next section, 
we translate ′Φ  into Φ  to resolve this problem.  

 
4. TRANSLATION FROM  TO : {X O′Φ × → 1,0}

}: {1,0,X dcΦ ×Σ →  
 
The translation algorithm of this section explains the 

details of the box labeled by “Translation Algorithm” in 
Fig. 1. In order to translate ′Φ  to , we need to find the 
relationship between the output set O and the event set 

Φ
Σ . 

The outputs and events (inputs) are not one to one related 
because multiple outputs may have effect on the 
occurrence of one event, and similarly, one output may 
affect the occurrence of multiple events. Furthermore, the 
relationships between events and outputs are state-
dependent. We assume that such relationships are available 
and can be defined. To mathematically model an event-
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3o−

output relationship, we define   ( ) to denote output 
 is on (off). Using this notation and logical operators 

“AND” and “OR” one can show the relationships. For 
example, suppose that if  is on, or  is on and  is off, 
then event  is possible to happen. Therefore one 
relationship between event  and outputs ,  and  

can be written as .  

ko+
ko−

ko

1o 2o 3o

1i
+

1i
+

1o 2o 3o

( ) ( )1 2 OR  AND o o+ +

We use a matrix to show the event-output relationships 
in every state. For state x, each row of its event-output 
relationship matrix shows the “AND” relation among the 
outputs, and the relation among different rows is of “OR” 
type. This means that if all the output conditions in at least 
one row of this matrix hold then the event can happen. We 
use ( )e xΛ  to show the event-output relationship matrix for 
event e at state x. The size of ( )e xΛ  is  where n is 
the number of outputs, and r x  is the number of rows of 

( )er x n×
( )e

( )e xΛ . [ ] ,
( )e a b
xΛ  corresponds to the status of o  in the ab

th 

row vector, and its content is 0, 1 or dc for o  off, o on, 
or  does not contribute to the occurrence of event e 
respectively.  

b b

bo

In the traditional supervisory control theory it is 
assumed that the controllability of an event is fixed. 
However for the supervisory controller generated from 
LLD this might not be true. This means that for a given 
event, one can disable the event in some occasions but not 
others. Accordingly, we propose a concept called dynamic 
controllability to describe the change in the event 
controllability over time. An event is controllable as long 
as there is at least one combination of outputs that can 
cause that event to be disabled. If no such combination 
exists then the event becomes uncontrollable. Since for 
every event, the output conditions change from one state to 
another, the controllability of events is fixed in every state 
but it could change when the controller state changes.  

Suppose that ( )c xΣ  is the set of controllable event set 
at state  and Xx∈ ( )uc xΣ is the set of uncontrollable 
events at state . If Xx∈ ( )e xΛ  is not defined (it has no 
rows), then event e  is uncontrollable at state x, i.e. 

; otherwise e it is controllable at state x. The 
feedback function 

∈Σ
( )uce∈Σ x

}: {1,0,X dcΦ ×  is defined as 
follows, 

Σ →

[ ]
[ ]

,

,

1 if ( , ) is defined; (Cases 1 and 2)

[1, ( )],  ( )  
( , ) 0

and ( ) ( , );  (Case 5)

otherwise.(Cases 3 and 4)

e e a b

e ba b

f x e

a r x x dc
x e

x x o

dc

⎧
⎪
⎪
⎪

∀ ∈ ∃ Λ ≠⎪⎪Φ = ⎨
′Λ ≠ Φ⎪

⎪
⎪
⎪
⎪⎩

 

 

 
Fig. 3. Feedback Function Generation Cases. 
 

Five cases in the feedback function generation are 
shown in Fig. 3. Further explanations of these cases are 
given below.  

Case 1: because ( , )f x e  is defined, event e must be 
enabled at state x; because ( )e xΛ  has no rows, therefore 

( )uce x∈Σ . 
Case 2: because ( , )f x e  is defined, event e must be 

enabled at state x; because ( )e xΛ  has at least one row, 
therefore ( )ce x∈Σ . 

Case 3: because ( , )f x e  is not defined, event e is not 
enabled at state x; because ( )e xΛ  is not defined, 

( )uce x∈Σ . For an uncontrollable event, if it is not enabled, 
the feedback on it can only be “don’t care”. 

Case 4: because ( , )f x e  is not defined, event e is not 
enabled at state x; because in each row of ( )e xΛ , there is 
at least one output o  such that b [ ] ,

( )  e a b
x dcΛ ≠ and 

[ ] ,
( ) ( , )e a b bx x o′Λ ≠ Φ , event e is not disabled; because 

( )e xΛ  has at least one row, e . For a non-enabled 
and non-disabled controllable event, the feedback can only 
be “don’t care”. 

( )c x∈Σ

Case 5: because ( , )f x e  is not defined, event e is not 
enabled at state x; because in each row of ( )e xΛ , there is 
no  such that  bo [ ] ,

( )  e a b
x dcΛ ≠ and 

[ ] ,
( ) ( , )e a b bx x o′Λ ≠ Φ , event e is disabled; because ( )e xΛ  

is defined, e ( )c x∈Σ . In this case the current state of 
outputs (based on feedback function Φ does not match 
with any of the output conditions shown by the rows of 

′

( )e xΛ .  
 
5. OBSERVATION ANALYSIS ON FA CONTROLLER 
 
The converted FA model S and the feedback function 

Φ  form an FA supervisory controller. The next step is to 
perform the observation analysis (shown by the box labeled 
“Observation Analysis” in Fig. 1). The observation analysis 
can provide the minimum sufficient input information that 

98                                                           INTERNATIONAL JOURNAL OF INTELLIGENT CONTROL AND SYSTEMSVOL. 10, NO. 1, MARCH 2005



a PLC needs to maintain the right control, predict the 
consequences caused by the lack of input information to the 
PLC, and also discover the proactive steps to prevent the 
undesirable consequences. The run-time reconfiguration 
strategies such as state aggregation, state disaggregation, 
and feedback adjustment techniques, adjust the control 
actions dynamically so that the controller can survive the 
sudden changes of input channel availability and (if 
possible at all) properly control the plant until the failed 
input channels are recovered.  

As mentioned in the preliminaries, the reconfiguration 
strategies are implemented through the mega-controller 

 and the feedback function 0( , , , , )mY E g y YΘ = Φ% . When 
the input channel status change (failure and repair of 
channels), the mega-controller determines the right 
feedback for the events. The right feedback in some cases 
could generate a more restrictive controller until the 
necessary input channels become available. We define a 
new feedback function  based on 
the feedback function of the mega-controller. 

1 : {0,Y X dcΦ × ×Σ→ 1, }

1

1            , ( , ) 1, ( , )
( , , ) 0           , ( , ) 0, ( , )

         , ( , )

x y y e x e dc
y x e x y y e x e dc

dc x y y e dc

⎧ ∈ Φ = Φ ≠
⎪

Φ = ∈ Φ = Φ ≠⎨
⎪ ∈ Φ =⎩

%

%

%

,  

and  is not defined if 1( , , )y x eΦ x y∉ . This function will 
be used in next section. 

 
6. IMPLEMENTATION OF OBSERVATION ANALYSIS ON 

LLD 
 
The mega-controller Θ  has a feedback function that is 

defined on its event set E which contains PLC input events 
and failure/repair events of input channels. However this 
function can not be implemented in an LLD, as the LLD 
feedback must be based on its outputs. For this reason we 
convert the mega-controller automaton to an extended 
mega-controller automaton. Before discussing the 
algorithm for this conversion, we would like to discuss an 
issue related to the implementation of output commands of 
LLD, that could arise during the construction of Θ . As 
mentioned before, in the construction of Θ , we might 
aggregate the states of X and generate some combined 
states, we could disaggregate a combined state to smaller 
combined or simple states, and we could adjust the 
feedback rules (switch between 0 and 1 rules) in the 
combined states to resolve the conflicts. During these 
operations, we assure the resulting feedback function of the 
combined states does not ask for any conflicting policy that 
is, enabling and disabling an event at the same time. 
However, guaranteeing a conflict free feedback rule does 
not necessarily mean that the corresponding output 
commands can be generated consistently. The following 
proposition shows this fact. 

Proposition 2. If a control strategy (state aggregation, 
disaggregation and feedback adjustment) can be 
implemented on the controller with FA model S and 

feedback function Φ , it may not be implementable on the 
LLD. 

Proof: we show the proof by the contradiction. 
Example 1.  The following list is a partial representation of 
the feedback function ′Φ of a control program. 

 
Table 1.  Partial representation of ′Φ . 

 o1 o2

x1 1 0 
x2 0 0 
… … … 

 
Suppose that , , 

,  and
1

1( ) [ 1]
e

x dcΛ =
1

2( ) [1 1]
e

xΛ =

2 2
1 2( ) ( ) [   0]

e e
x x dcΛ = Λ = 1 2 2( , )f x e x= , then the 

partial representation of Φ  is shown in Table 2. 
 

Table 2.  Partial representation of Φ . 
 e1 e2

x1 0 1 
x2 0 dc 
… … … 

 
We see that for Φ , states 1x  and 2x  are conflict free, 

therefore they can be combined, but for ′Φ , because 
1 1( , ) 1x o′Φ =  but 2 1( , ) 0x o′Φ = , this strategy is not 

applicable on the LLD. ■ 
We notice that the observation analysis strategies are 

designed based on Φ , however their implementation on 
LLD is performed by the information from ′Φ . As shown 
in the previous example, such implementation is not 
always feasible. Therefore we might need to modify our 
observation analysis strategies if they cannot be 
implemented on the LLD. In the following, we present an 
algebraic method to conduct the required modifications. 

For a given row, say b, of the relationship matrix ( )e xΛ , 
we say the output ko O∈  is reversely activated if (this 
output is activated at state x and )  or (the 
output is deactivated at state x and ). 
Accordingly 

,[ ( )] 0e b kxΛ =

,[ ( )] 1e b kxΛ =

ko O∈  is said to be positively activated if 
(this output is activated and ) or (this output 
is deactivated and 

,[ ( )] 1e b kxΛ =

,[ ( )] 0e b kxΛ = ) or ( ,[ ( )]e b kx dcΛ = ). 
The following rules in implementing feedback 

adjustments of outputs are considered. If for event e∈Σ , 
y Y∈  and x X∈ , ( , ) 1x eΦ =  but , then in 

any of the row vectors in 
1( , , ) 0y x eΦ =

( )e xΛ at least one output has to 
be reversely activated. If 1( , , ) 1y x eΦ =  then all the outputs 
of at least one row vector in ( )e xΛ  have to be positively 
activated. We can see that there are multiple ways of 
enabling event e at state x if there are multiple row vectors 
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in ( )e xΛ , and there might be multiple ways of disabling 
event e at state x if there are multiple columns in ( )e xΛ . 

 In general, if a consistent feedback can be found for 
each output, then this control strategy is implementable, 
otherwise, it is not. Here we introduce a mathematical 
model that can be used to find the values of outputs that 
can support the new feedback function . The objective 
of this model is to find at least one feasible solution. 
Therefore if no feasible solution is found by solving the 
model, it means no consistent set of output values exists 
that can implement the new feedback function 

1Φ

1Φ . 
Based on the applied observation analysis strategies, 

some of the states of the mega-controller are combined 
states. Suppose that v be such a state. We recall that 

 and v X⊆ 1v ≥ . Since the feedback rule for all states of 
 that are not combined does not change, i.e. Θ

1( , , ) ( , )x x e x eΦ = Φ  for x X∈  and , we do not need 
to consider the modification of the output commands for 
these states. Therefore we apply the following model to the 
combined states of Θ  only. We assume that the new 
feedback function  is given for every 

e∈Σ

1( , , )v x eΦ x v∈  and 
. The goal is to find the values of outputs 

 such that the rules (enable, disable, dc) of 
 can be implemented. We propose the following 

integer programming (IP) model to solve this problem. 

e∈Σ

1 2, , , no o oL

1( , , )v x eΦ

 
Mathematical Model 

1

Min   
n

i
i

z
=
∑  

Subject to 
(1) 

 

, 

, , ,  ,
      1
[ ( )]

1 { (1 2[ ( )] )( [ ( )] )}

e b i

x e b e b i i e b i
i n

x dc

y M x z x
≤ ≤

Λ ≠

≥ − − Λ − Λ∑ , ,1 ( )ex v e b r x∈ ∈Σ ≤ ≤   

(2) 

, 

, ,
, ,1  ( )

[ ( )] 0

(1 )
e

e b i

x e b i
x v e b r x

x

y M z
∈ ∈Σ ≤ ≤
Λ =

≤ −∑       1  i n≤ ≤

(3) 

, 

, ,
, ,1  ( )

[ ( )] 1
e

e b i

x e b i
x v e b r x

x

y M
∈ ∈Σ ≤ ≤
Λ =

≤∑ z                1  i n≤ ≤

(4)                      , ,
1  ( )

0
e

x e b
b r x

y
≤ ≤

=∑ x v∈ , 

    1 and ( , , ) 0e v x e∈Σ Φ =

(5)                      , ,
1  ( )

1
e

x e b
b r x

y
≤ ≤

≥∑ x v∈ , 

    1 and ( , , ) 1e v x∈Σ Φ =e

, , 0,1x e by =                                     
x v∈ ,   and 1 ( )ee b∈Σ ≤ ≤ r x

0,1iz =                                        1  i n≤ ≤
 
Model Discussion: In this model, the definitions of 
variables are: 

iz =1(0) if output  is activated (deactivated), 1io i n≤ ≤ . 

, ,x e by =1 if all the output conditions of the  row of thb
( )e xΛ  are satisfied, and , ,x e by =0 otherwise. 
M is a large number. All other parameters have already 

been defined. Constraint set (1) forces variable , ,x e by  to 

take value 1 if necessary. If all the conditions of the  
row of 

thb
( )e xΛ  are satisfied then the expression in {} is set 

to 0 and therefore the right hand side of this constraint 
becomes 1. Consequently , ,x e by  is forced to take the value 

of 1. If at least one of the conditions of the  row of thb
( )e xΛ  is not satisfied then the related constraint allows 

, ,x e by  to be greater than −∞ . Constraint sets (2) and (3) 
ensure that variables , ,x e by ’s are set to zero if necessary. If 
output  is decided to be activated ( ), then all the 
rows in the relationship matrixes 

io 1iz =
( )e xΛ , e  that require 

 to be deactivated are not satisfied. Therefore the 
corresponding 

∈Σ

io

, ,x e by  of these rows must be set to zero. This 
is done by constraint set (3). Constraint set (4) has the 
similar mechanism for the case that output  is decided to 
be deactivated (

io
0iz = ). Constraint set (5) ensures that no 

row in the relationship matrix ( )e xΛ  is satisfied if 

1( , , ) 0v x eΦ = . This means that the selected configuration 
of outputs disables event e. Constraint set (6) guarantees 
that at least one set of conditions shown by ( )e xΛ  for 
enabling event e is satisfied when . The 
objective function does not have any specific role in the 
formulation. The current function minimizes the number of 
output activation commands that the PLC sends to the 
plant after the reconfiguration policy is implemented. 
However, one can use other objective functions depending 
on the design goals. As far as we are concerned if the 
constraints are satisfied, the correct implementation of 

1( , , ) 1v x eΦ =

1( , , )v x eΦ  is guaranteed.  
 

Example 2.  
Suppose that 1 2{ , }u x x= , 1 2 3{ , , }e e eΣ = , 

1 2 3 4{ , , , }O o o o o= , and the output-event relation matrixes 

are 
1 1

1
( ) 1 1

1 0 1
e

dc dc dc
x dc dc

dc

⎡ ⎤
⎢ ⎥Λ = ⎢ ⎥
⎢ ⎥⎣ ⎦

, 

2 1

0
( )

1 0 1e

dc dc dc
x

dc
⎡ ⎤

Λ = ⎢ ⎥
⎣ ⎦

, 

3 1

0
( )

0 0e

dc dc dc
x

dc dc
⎡ ⎤

Λ = ⎢ ⎥
⎣ ⎦

, 

[ ]
1 2( ) 0 1 0e x dcΛ = , 

[ ]
2 2( ) 1 0 1e x dcΛ = , and 

[ ]
3 2( ) 1 1 0e x dcΛ = . 
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The new feedback function for states 1x  and is 2x  
(when combined in u ) is given by , 

, and , , 
, and .  The resulting IP 

model is: 

1 1 1( , , ) 1u x eΦ =
= =

=

4

)

1 1 2( , , ) 0u x eΦ 1 1 3( , , ) 1u x eΦ = 1 2 1( , , ) 1u x eΦ

1 2 2( , , ) 0u x eΦ = 1 2 3( , , ) 1u x eΦ

MIN  1 2 3z z z z+ + +
Subject to 

1 1, ,1 11 (1x ey M z≥ − −  

1 1, ,2 2 31 (1 ) (1x e )y M z M z≥ − − − −  

1 1, ,3 1 2 31 (1 ) (1x e )y M z Mz M z≥ − − − − −  

1 2, ,1 11x ey Mz≥ −  

1 2, ,2 1 2 41 (1 ) (1x e )y M z Mz M z≥ − − − − −  

1 3, ,1 21x ey Mz≥ −  

1 3, ,2 3 41x ey Mz Mz≥ − −  

2 1, ,1 2 3 41 (1 )x ey Mz M z Mz≥ − − − −  

2 2, ,1 1 2 41 (1 ) (1x e )y M z Mz M z≥ − − − − −  

2 3, ,1 1 31 (1 ) (1x e )y M z M z≥ − − − −  

1 1 1 1 1 2 2 2 2 3, ,1 , ,3 , ,2 , ,1 , ,1 1x e x e x e x e x ey y y y y M+ + + + ≤ z  

1 2, ,1 1(1 )x ey M z≤ −  

1 1, ,2 2x ey Mz≤  

1 1 1 2 1 3 2 1 2 2, ,3 , ,2 , ,1 , ,1 , ,1 2(1 )x e x e x e x e x ey y y y y M z+ + + + ≤ −  

1 1 1 1, ,2 , ,3 3x e x ey y M+ ≤ z  

1 3, ,2 3(1 )x ey M z≤ −  

1 2 2 1, ,2 , ,1 4x e x ey y M+ ≤ z  

1 3 2 1, ,2 , ,1 4(1 )x e x ey y M z+ ≤ −  

1 1 1 1 1 1, ,1 , ,2 , ,3 1x e x e x ey y y+ + ≥  

1 2 1 2, ,1 , ,2 0x e x ey y+ =  

1 3 1 3, ,1 , ,2 1x e x ey y+ ≥  

2 1, ,1 1x ey ≥  

2 2, ,1 0x ey =  

2 3, ,1 1x ey ≥  
All variables are 0 or 1. 
 
The solution will be  

1 1z = , , , ,   2 0z = 3 1z = 4 0z =

1 1, ,1 1x ey = , , , , 
1 1, ,2 0x ey =

1 1, ,3 1x ey =
1 2, ,1 0x ey =

 , , , 
1 2, ,2 0x ey =

1 3, ,1 1x ey =
1 3, ,2 0x ey =

2 1, ,1 1x ey = , , .  
2 2, ,1 0x ey =

2 3, ,1 1x ey =

Therefore, we must activate outputs 1 and 2, and 
deactivate outputs 2 and 4. 

 After deriving the feedback function for every 
state of the mega-controller, we need to implement the 
mega-controller strategies on the LLD. Since the mega-

controller is a finite automaton, its translation to LLD is 
straightforward and can be done by one of the available 
conversion methods in the literature [23]. However, the 
LLD generated from Θ  is not enough to implement a 
correct reconfigurable control. We recall that in Section 3, 
during our conversion from LLD to FA, we did not 
consider the conversion of internal events of the PLC (such 
as timer events, counter events, changes in the PLC 
internal variables, etc.). We argued that these events cannot 
directly affect the observation analysis and therefore need 
not be included in the FA. Instead of these events, we 
considered their effects on the output vector. We created 
the virtual event ω  that appeared on the FA model 
whenever we observed a change in the output that was not 
accompanied by changes in the inputs. While event ω  was 
appropriate to perform the observation analysis, this event 
cannot be used in the LLD as it is not corresponding to any 
specific input or output element. Furthermore, the original 
LLD logic related to the internal components, that is not 
directly reflected in the FA model, must be maintained to 
manage the operations of internal components. In fact the 
extended mega-controller only manages the necessary 
output command modifications required to respond to the 
loss of information due to the unobservability of input 
events. However, the mega-controller cannot manage the 
operations of internal components.  

For this reason, in the final implementation, we propose 
an LLD (called reconfigurable LLD) with two modules. 
Module 1 is the original LLD. Module 2 is the LLD 
generated from the extended mega-controller. Module 1 
rungs are placed above the rungs of Module 2.  In this case, 
if there is a conflict between these two modules on the 
activation/deactivation of outputs, the priority is given to 
the decisions made by Module 2. The reason is that in 
every PLC program scan, the rungs belong to Module 2 are 
executed after the execution of the Module 1’s rungs. 
Therefore after the update of output values in the output 
image table by Module 1, if necessary, Module 2 
overwrites some or all of these values.  These values are 
then sent to the output channels (output hardware) for 
execution. Module 1 controls the original logic, including 
the internal variables. Module 2 tracks the extended mega-
controller state and is responsible for digesting the input 
channel failure and repair events. As long as, the state of 
the mega-controller is not combined, Module 2 does not 
affect the output decisions made by Module 1. We recall 
that the IP model presented in this section is used to 
determine the values of the outputs for the combined states. 
For the individual states we do not have any modification 
of the output commands, that is we use the output strategy 
shown by ′Φ . When the mega-controller is set to a 
combined state, the regular output decisions made by the 
original LLD may no longer be acceptable. In this case the 
output commands prescribed by the extended mega-
controller (determined by the IP model) are used.  

Suppose that for every x X∈  of the finite 
automaton 0( , , , , )mS X f x X= Σ as defined in Section 3, 
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2

( , )
( , )

     
( , )

x

n

x o
x o

o

x o

′Φ⎡ ⎤
⎢ ⎥′Φ⎢=
⎢
⎢ ⎥′Φ⎣ ⎦

M
⎥
⎥

 determines the feedback on the outputs. 

We assume that the extended mega-controller 
 is given (we use u instead y here to 

prevent notation confusion). Define U as a subset of U 
that contains those states of U that are combined. By the 
construction procedure of Θ , we have 

0( , , , , )mU E g u UΘ =
′

0u U U ′∈ − . Also 
. Suppose that  is the associated output 

command vector of u . The components of 
U U X′− ⊆ uo%

U∈ uo  are 
determined from the solution of the IP model if u U ′∈ , 
and for u U  we have U ′∈ − uo o=% u . By this definition we 
have a slight violation in the definition of o , as  o  is 
defined on X  not U . However we notice that every 
state in U  has a member of X as its first component. 
This member can be used while applying 

U ′−
U ′−

o  to the 
elements of U . We assume that is the sets of 
incoming events to state u. We also define  (

U ′− ( )uΔ

0e 0e E∉ ) as 
the LLD initialization event. In the following, we present 
the generation process of Module 2 from the extended 
mega-controller. 

 
Conversion from extended mega-controller to LLD 
(Module2): 
Begin 

1- Create an initialization rung. The only input contact 
for this rung is for event , which is normally open, and 
the only output component is a latch coil for state . 

0e

0u
2- For every  create one rung as follows: u U U ′∈ −

2-1- For every  and ( )e u∈Δ e ω≠ , define a 
branch that is the serial configuration of two 
normally open contacts, one for event e  and the other 
for state v where g(v,e)=u.  

2-2- For every  and ( )e u∈Δ e ω= , let g(v,e)=u 
and execute step 2-2-1. 

2-2-1- For every x X∈  that has contributed 
in the construction of v (we recall that if v is a 
combined state then several members of X have 
contributed to the construction of v, and if v is 
not a combined state then one member of X is 
used in the construction of v.), and f(x,ω )=u, 
create one branch that has a serial configuration 
of one normally open contact for event e, one 
normally open contact for every output that io
( ) 0x io =  and ( ) 1u io = , and one normally 
closed contact for every output that io ( ) 1x io =  
and ( ) 0u io = .  

2-3- Connect all the created branches in steps 2-1 
and 2-2 in parallel and place the generated branch 
configuration as the input of the rung for state u. 

2-4- Create one latch coil for state u and one 
unlatch coil for every . Put all these coils 
in a parallel structure in the output of the rung for u. 

{ }v U u∈ −

3- For every u U ′∈  create one rung as follows: 
3-1- For every ( )e u∈Δ  and e ω≠ , define a 

branch that is the serial configuration of two 
normally open contacts, one for event e  and the other 
for state v where ( , )g v e u= .  

3-2- For every ( )e u∈Δ  and ( )e e uω= ∈Δ , let 
( , )g v e u=  and execute step 3-2-1. 

3-2-1- For every x X∈  that has contributed 
in the construction of v and for every x X′∈  
that has been used in the construction of u, if  

( , )f x w x′= , create one branch that has a serial 
configuration of one normally open contact for 
event e, one normally open contact for every 
output  that io ( ) 0x io =  and ( ) 1x io ′ = , and one 
normally closed contact for every output  that io
( ) 1x io =  and ( ) 0x io ′ = .  

3-3- Connect all the created branches in 
steps 3-1 and 3-2 in parallel and place the 
generated branch configuration as the input of 
the rung for state u. 

3-4- Create one latch coil for state u and one 
unlatch coil for every . Create one 
latch coil for every output  that 

{ }v U u∈ −

io ( ) 1x io =%  and 
one unlatch coil for every output  that io
( ) 0x io =% . 

3-5- Put all the coils generated in step 3-4 in 
a parallel structure in the output of the rung for 
state u. 

End. 
We have shown the LLD conversion of the mega-

controller in the following example. This example includes 
all the required steps from the beginning to constructing 
the reconfigurable LLD. 

 
7. ILLUSTRATIVE EXAMPLE 

 
The system, shown in Fig. 4, includes a belt conveyor, a 

roller conveyor, a filling machine, a scale, a printer and 
two photoelectric sensors. The process is to fill the boxes 
lined up on the belt conveyor, and to weigh the boxes by a 
scale attached to the conveyor. The boxes are then 
transported onto the roller conveyor where the production 
related data are printed on the boxes. The boxes are fed 
with equal distances through a feeder in the upstream 
which is not considered as a plant component. Likewise, 
the downstream subsystems, such as packaging and storage 
have been excluded from the system under study. The 
system’s operation is controlled by a PLC. The roller 
conveyor runs all the times. The PLC does not control the 
roller conveyor drive. The roller conveyor can only 
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accommodate one box due to its length limit. The 
photoelectric sensor consists of a transmitter and a receiver. 

When the “Ready” signal is received, the PLC activates 
the belt conveyor motor to move the boxes forward. When 
a box breaks the photoelectric beam installed at the filling 
zone, the PLC stops the motor so that the box is right under 
the filling nozzle. After a preset of 2 second, the filling 
starts. When the filling is done, a “Filling_done” signal is 
sent to the PLC by the filling machine. Then the scale is 
activated to weigh the filled box. After the weight is 
received, the PLC starts the motor again. Because the roller 
conveyor runs at the same speed and direction as the belt 
conveyor, the box is transported smoothly onto the roller 
conveyor. When a box passes the photoelectric sensor 
located in the center of the roller conveyor, the PLC 
commands the printer to print on the box. This forms one 
cycle of the process on an individual box. When the belt 
conveyor transports the filled box onto the roller conveyor, 
the subsequent box is also moved forward to the filling 
zone. Simultaneously, two boxes are under process – one is 
being filled and another is being printed. Fig. 5 shows the 
original LLD. The descriptions of inputs and outputs in 
this LLD are given Table 3.  

Figure 6 shows the finite automata model of this LLD. 
In converting the LLD to a finite automaton, input turn-on 
and turn-off actions are considered as events. The event set 
is, therefore, ={Ready+, Ready-, ps1+, ps1-, ps2+, ps2-, Σ

 

 
 

Fig. 4.  Example system sketch. 
 
Table 3. Inputs and output descriptions. 

I/O Tag Name Physical Meaning 

Ready System is ready for process.
ps1 Photoelectric sensor 1 
ps2 Photoelectric sensor 2 

Filling_done Filling is done. 
Input 

Weight_recd Weight is received by main 
tMotor Motor drive actuator 

Filling Filling machine actuator 
Weighing Scale actuator 

Output 

Print Printer actuator 

 

  

0  
Ready

L
Motor

1  
ps1

U
Motor

EN
DN

Timer On Delay
Timer T1
Preset 2000
Accum 0

TON

2  
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L
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e
e
e
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e
e
e

 
Filling_done

U
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L
Weighing

4

e
e
e
e
e
e
e

 
weight_recd

U
Weighing

L
Motor

5

e
e
e
e

 
ps2

 
Print

Fig. 5. Ladder logic diagram of the example system. 
 

 
Fig. 6. Converted FA model. 

 
Filling_done+, Filling_done-, Weight_recd+, 
Weight_recd-, ω }. Another product of the conversion is 
the feedback function ′Φ , given in Table 4.  

To translate the feedback function ′Φ  to Φ , the 
relation between events and outputs is needed, which is 
listed in Table 5. Applying the algorithm discussed in 
Section 4, the feedback function Φ  is obtained. The result 
is shown in Table 6. 

In states 4, 10, 11 and 12, event ps2 is not controllable. 
The reason is that at those states, there is no combination 
of outputs to enable or disable this event. Therefore, from 
the PLC point of view, it is not controllable.  

The converted FA model S and the feedback function 
Φ  form an FA supervisory controller.  We then perform 
the observation analysis on it. Suppose that the status of 
input channels (input observation means) is modeled as 
working, represented by letter O, and failed (including the 
case that the communication is significantly delayed), 
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}Table 4. Feedback function : {1,0,X O d′Φ × → c . 
Events No. States 

Motor filling weighing Printing
1 00000_0000 0 0 0 0 
2 10000_1000 1 0 0 0 
3 00000_1000 1 0 0 0 
4 01000_0000 0 0 0 0 
5 01000_0100 0 1 0 0 
6 01010_0010 0 0 1 0 
7 01000_0010 0 0 1 0 
8 01001_1000 1 0 0 0 
9 01000_1000 1 0 0 0 

10 01100_0001 0 0 0 1 
11 01100_0000 0 0 0 0 
12 01100_0100 0 1 0 0 

 
Table 5.  Event-Output relationships. 

Event e eΛ  

Ready+ Does not exist in any state 
Ready- Does not exist in any state 
ps1+ [1 dc dc dc] at all the states 
ps1- [1 dc dc dc] at all the states 

ps2+ 
[1 dc dc dc] at all the states expect  

state No. 4, 10, 11, 12 where it does 
not exist 

ps2- 
[1 dc dc dc] at all the states expect  

state No. 4, 10, 11, 12 where it does 
not exist 

Filling_done+ [dc 1 dc dc] at all the states 
Filling_done- Does not exist in any state 
Weight_recd+ [dc dc 1 dc] at all the states 
Weight_recd- Does not exist in any state 

 
represented by letter X. The states in S are renamed by its 
index in Tables 4 or 6. In the initial state, state 1, we 
assume that all the input channels are working properly, so 
their status vector is “OOOOO” where each digit stands for 
a status of an input channel in the order listed in Table 4.  

In the extended controller model Θ , all the possible 
statuses of each input channel are considered. Figure 7 
shows a part of this model. Suppose that in state 1, the 
channel for the input “Ready” is failed, which makes event 
“Ready+” and “Ready-” unobservable. By the observation 
analysis, we find that there are conflicting control actions 
on the event “ps1+” in states 1 and 3. Therefore, the 
feedback adjustment strategy is applied, and the new 
feedback is . Then we apply the state 
aggregation strategy and accordingly states 1-3 are 
combined, and we call the new state “123”. After solving 
the  IP  model  of the previous section for states 1, 2, and 3,  

1(123,3, 1 ) 0psΦ +

Table 6. Feedback function : {1,0, }X dcΦ ×Σ→ . 

No. States  Ready+ ready- ps1+ ps1- ps2+
1 00000_0000 1 dc 0 0 0 
2 10000_1000 dc 1 dc dc dc 
3 00000_1000 dc dc 1 dc dc 
4 01000_0000 dc dc 0 0 1 
5 01000_0100 dc dc 0 0 0 
6 01010_0010 dc dc 0 0 0 
7 01000_0010 dc dc 0 0 0 
8 01001_1000 dc dc dc dc dc 
9 01000_1000 dc dc dc 1 dc 

10 01100_0001 dc dc 0 0 dc 
11 01000_0000 dc dc 0 0 dc 
12 01100_0100 dc dc 0 0 dc 

No. States  ps2-
Filling 
_done+ 

Filling 
_done- 

Weight
_recd+

Weight
_recd-

1 00000_0000 0 0 dc 0 dc 
2 10000_1000 dc 0 dc 0 dc 
3 00000_1000 dc 0 dc 0 dc 
4 01000_0000 dc 0 dc 0 dc 
5 01000_0100 0 1 dc 0 dc 
6 01010_0010 0 0 1 0 dc 
7 01000_0010 0 0 dc 1 dc 
8 01001_1000 dc 0 dc 0 1 
9 01000_1000 dc 0 dc 0 dc 

10 01100_0001 dc 0 dc 0 dc 
11 01000_0000 dc 0 dc 0 dc 
12 01100_0100 1 1 dc 0 dc 

 

 
 

Fig. 7: Partial model of extended controller . Θ

 
the relationship matrices, and , we obtain (the IP model 
is not shown here) the following output commands:  Motor 
is deactivated, Filling is deactivated, Weighing is 
deactivated,  and Printing is deactivated. 

1Φ

The physical explanation of this change is that in the 
plant events “Ready+” and “Ready-” may have or have not 
happened, and thus the current state could be either of 
states 1, 2 or 3. But the PLC is unaware of the occurrence 
of those events. As a result, it controls the conveyor system 
according to the feedback in state 1 even though the correct 
control instruction is supposed to be the feedback in state 2 
or 3. In this case, we need to find a compromised control 
feedback suitable for all the three states, 1, 2 and 3. The 

=
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new control actions on outputs in states 2 and 3 are 
consistent with the current ones in state 1. So there is no 
need to change the logic of LLD to accommodate the 
change because the PLC program will not be set to states 2 
and 3 until the “ps1” input channel is recovered.  But in 
state 3, if the input channel for “ps1” is failed, the new 
feedback disables “ps1+” which is in conflict with the 
feedback . Therefore, the logic of PLC has to be. 
Similarly in state 5, for the case that “Filling_done” input 
channel is failed, the changes are reflected in the extended 
mega-controller. After applying the conversion algorithm 
of Section 6, to the extended mega-controller, we generate 
the second module of the reconfigurable LLD. This 
module is partially shown in Fig. 8. By putting the first 
module (shown in Fig. 5) and the second module after that, 
we can generate the reconfigurable LLD. 

Φ
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Fig. 8. Reconfigurable LLD. 
 

8. CONCLUSION 
 
In this paper, we introduce a framework for converting 

a traditional LLD to a reconfigurable LLD. The 
reconfigurable LLD modifies the control of its plant when 
the means reporting the plant events to the PLC fail. It is 
shown that the reconfigurable LLD can continue a proper 
control of the plant under conditions that the traditional 
LLD cannot. Partial observation theory is used in the 
construction of the new LLD.  

One future research direction established by this work is 
to develop some efficient techniques to obtain the 
information needed by the presented framework. For 
example how one can efficiently derive the event-output 
relationships of a given controller, can be a research 
problem. Another research challenge is to implement the 
proposed method for large scale systems (LLD with 
thousands of rungs) and evaluate its effectiveness. Also 
modifying the discussed methods for the case of 
continuous PLC input and/or outputs is an open research 
problem. 
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