
Consumption and Production of Digital Public
Goods

Modeling the Impact of Different Success Metrics in Open Source

Software Development
Nicholas P. RADTKE1,3 and Marco A. JANSSEN2,3

Abstract—With the Internet has come the phenomenon of
people volunteering to work on digital public goods such as open
source software and online encyclopedia articles. Presumably, the
success of individual public goods has an effect on attracting
volunteers. However, the definition of success is ill-defined. This
paper explores the impact of different success metrics on a simple
public goods model. The findings show that the different success
metrics considered do have an impact on the behavior of the
model, with the largest differences being between consumer-
oriented and producer-oriented metrics. This indicates that many
proposed success metrics may be mapped into one of these two
categories and within a category, all success metrics measure the
same phenomenon. We argue that the characteristics of producer-
oriented metrics more closely match real world phenomena,
indicating that public goods are driven by producer, and not
consumer, interests.

Index Terms—Digital public goods, success metrics, FLOSS,
open source software, Wikipedia.

1. INTRODUCTION

IN recent years an interesting phenomenon can be observed
in the digital media. People are volunteering their time to

contribute, for example, to the creation of software [1] or an
online encyclopedia [2] at their own costs for the benefit of the
wider population. Such products can be called public goods.
Traditional non-cooperative game theory argues that people
will not invest in public goods since it benefits to free ride on
the investments of others.

Research in psychology, economics, and political science
shows that people invest in public goods, as observed in case
studies and replicated in controlled experiments with human
subjects [3]. A variety of factors are put forward as possible
explanations for these contributions, such as other-regarding
preferences, communication, etc.

Another finding is that the level of cooperation reduces as
group size increases [4]. Therefore, it is remarkable to see
high levels of contributions to digital public goods like open
source software and Wikipedia, where the number of people
involved is huge. Looking into more detail of the statistics, it

1School of Computing and Informatics, Ira A. Fulton School of Engineer-
ing, Arizona State University, P.O. Box 878809, Tempe, AZ 85287-8809,
U.S.A.

2School of Human Evolution and Social Change, Arizona State University,
P.O. Box 872402, Tempe, AZ 85287-2402, U.S.A.

3Center for the Study of Institutional Diversity, Arizona State University,
P.O. Box 872402, Tempe, AZ 85287-2402, U.S.A.

can be seen that the distribution of the public goods products
which are successful is skewed, as is as the distribution of
producers working on public goods. For example, only 14%
of the projects at SourceForge, the largest site hosting open
source projects, have been updated during the last year.4

In an earlier paper [5] we presented an empirically grounded
model that captures several main patterns of the SourceForge
repository of open source data. One of the assumptions is
that the success of a project affects the attractiveness of a
project. However, a key problem in the literature of open
source software is the ambiguity of the definition of success for
a project. Can it be measured by the number of downloads, the
frequency of releases, the number of bug fixes, or any number
of other indicators?

This paper presents a more theoretical and simpler model
than [5] of the evolution of populations of digital public
goods; the model is used to test the consequences of different
definitions of success.

First, basic empirical findings from studies on open source
software and Wikipedia will be presented in Section 2. In
Section 3 the model will be presented, and the analysis of
the model is contained in Section 4.

2. EMPIRICAL PATTERNS

With Web 2.0 people can contribute and consume goods
which are freely available to others. What makes some of these
products successful and others not? How is success defined?

2.1. SourceForge

SourceForge is a site that contains a set of online tools
facilitating the development of open source software. It was es-
tablished in November, 1999 and as of November, 2008 hosts
138,674 projects. Using data from this site, the distribution of
developers working on a project has been shown to be highly
skewed, with 67% of projects having only one developer and
90% of projects having fewer than 4 developers [6]. It has
been found that 10% of the developers write 72.3% of the code
[7] and the 100 most active developers are involved in 1,886
different projects [8]. Also, the number of people reporting
bugs is an order of magnitude greater than the number of
developers fixing bugs, which is an order of magnitude greater
than the number of core developers for a project [7].

4http://www.SourceForge.net year period defined as 11/28/07-11/27/08.

INTERNATIONAL JOURNAL OF INTELLIGENT CONTROL AND SYSTEMS
VOL. 14, NO. 1, MARCH 2009, 77-86

Various extensive surveys have been performed where open
source developers are asked why they participate in open
source software development (e.g., [9], [10]). The main rea-
sons given are:
• Develop new skills
• Share knowledge with other developers
• Improve existing open source projects
• Engage in a new form of cooperation
• Enjoy the challenge
• Improve job opportunities

2.2. Wikipedia

The online encyclopedia Wikipedia started in January, 2001
and now5 consists of of 11.8 million articles in 264 languages
from 597 million edits by 14.6 million users. The distribution
of contributions is skewed with 90% of the users contributing
fewer than 10% of the edits [11]. The number of people per
article and the number of edits per article follows a power law
distribution [12].

[2] distinguishes factors that motivate people to participate,
namely reputation and commitment to group identity, in
Wikipedia. Registered users are assumed to be motivated
more than anonymous users to contribute and to have higher
quality contributions. [2] shows that anonymous users provide
infrequent contributions, but the contributions are of high
quality.

In summary, both digital public goods examples show that
there is a skewed distribution of contributions.

2.3. Success Metrics

In order to understand why the contributions to SourceForge
and Wikipedia are so skewed, it is necessary to understand
why people contribute or use certain digital public goods. A
possible explanation is that contributors prefer to participate
in successful projects. However, there is no agreement how
to measure the success of digital public goods. For example,
success of open source software is not clearly defined. While
there are no generally agreed upon standards, the following
success indicators have been proposed:
• Completion of the project [13]
• Progression through maturity stages [14]
• Number of developers
• Level of activity (i.e., bug fixes, new feature implemen-

tations, mailing list)
• Time between releases
• Project outdegree [15]
• Active developer count change trends [15]

Furthermore, [16] asked eight developers how they defined
success and failure of an open source project. Answers varied
for success, but all agreed that a project with a lack of users
was a failure. Thus having a sufficient user-base may be
another metric for success.

5http://meta.wikimedia.org/wiki/List of Wikipedias accessed November
24, 2008.

For Wikipedia articles, success may relate to the quality of
the articles. Quality of the articles is suggested to be related
to the number of edits and unique editors to an article [17].
Usual manual evaluations of articles, factual accuracy [18],
and credibility [19] are mentioned. Statistics of consumers
and consumer experiences with articles would be helpful, but
information on how many times articles have been read is not
available.

In summary, there is no clear method to define success of
digital public goods, especially for the purpose of modeling the
development of these goods. Therefore we will use different
definitions of success in our model that reflect the accumula-
tion of activities and the number of users involved and explore
whether different definitions of success have an impact on the
patterns generated by the model.

3. MODEL DESCRIPTION

The model we present is a very simplistic model of con-
sumers and producers of an ecology of public goods based on
the observed processes of open source software development.
Given are Na agents and Np projects. At each time step
an agent may 1) contribute to the development of a project
and/or 2) consume (a.k.a. use) a project. Each agent has a
probability pc to contribute to a project and a probability pu
to consume from a project. The probabilities pc and pu are
drawn from an exponential distribution with parameter value
10. This represents the notion that most agents will have a
small probability to be active during a time step. If a value
higher than 1 is drawn, this result is ignored and a new value
is drawn.

When an agent is active during a time step it will make
a decision about which project to contribute to or use based
on how close the characteristics of a project match with the
preferences of the agent. To define how well agent preferences
match characteristics of a project, the matching interests value
Mi is calculated for each project, as shown in Equation (1):

Mi = 1− (np − na)2 (1)

where np is the characteristics (a.k.a. needs) of the project
and na the preference value for the agent.6 If both dimensions
match, Mi is equal to 1. Initially values for np are assigned
randomly from a uniform distribution. However, it is assumed
that consuming agents may have certain needs (e.g., an interest
in well-documented, easy-to-use projects) while producing
agents will have a different set of needs (e.g., an interest in
projects for the challenge and to gain experience) [9], [10].
Thus values for na are based on an agent’s producer number
pc and consumer number pu. A simple function for mapping
from pc and pu to na is shown in Equation (2):

na = f(pu, pc) =
pc − pu + 1

2
(2)

A visual depiction of the mapping is shown in Figure 1.
Essentially, an agent’s needs can be thought of as a continuum
between 0.0 and 1.0. Lower values (< 0.5) represent a bias

6To keep consistent with our earlier publication [5] covering a more
complex model, we refer to np and na as needs vectors. In this simplified
model, these are one-dimensional vectors and can thus be treated as scalars.

78 INTERNATIONAL JOURNAL OF INTELLIGENT CONTROL AND SYSTEMS, VOL. 14, NO. 1, MARCH 2009

Fig. 1. Example of mapping an agent’s producer and consumer numbers
to its needs vector. For a given point (x, y), the nearest point on the Agent
Needs line is found and then projected onto the right y-axis.

towards consuming and higher values (> 0.5) a bias towards
producing. For a given point (x, y), mapping is done by finding
the nearest point on the Agent Needs line and then projecting
this onto the second y-axis. Thus a full-strength producing
agent has a needs vector of 1 (f(0, 1) = 1), a full strength
consuming agent a needs vector of 0 (f(1, 0) = 0), and
an equal-part producing, equal-part consuming agent a needs
vector of 0.5 (f(x, x) = 0.5).

The utility Uu of a project to a consuming agent is propor-
tional to how well the agent’s and project’s interests match,
as shown in Equation (3):

Uu = Mi (3)

Agents who decide to contribute to a project are assumed
to take into account both how well it matches the agent’s
preferences (Mi) and how successful the project is (S). Agents
differ in their weights, α, for the two different indicators.
Currently, α is drawn from a normal distribution with a mean
of 1/2 and standard deviation of 1/6. The utility of a project
for contributing agents is thus initially defined as

U ′
c = α ·Mi + (1− α) · S (4)

where Mi, and S are scaled between 0 and 1. Since there is
no agreement on how to measure success S, we explore the
consequences of different formulations of success:
• S1: current number of consumers
• S2: cumulative number of consumptions
• S3: current number of producers
• S4: cumulative number of contributions (a.k.a. work)
• S5: each project equally successful

S1 and S3 represent the current popularity, or recent popularity,
of a project with consumers and producers respectively. S2
and S4 represent long-term popularity with consumers and
producers respectively. S5 is used as a baseline for comparison
purposes. Note that each success metric is normalized. For
example, for a given project P , S1 is the current number of
consumers working on P divided by the total number of agents
currently consuming any existing projects.

Finally, a switching costs sc is subtracted from the utility
of production if the project is different than the last project
the agent contributed to. This reflects the transaction costs in
switching projects, which may include learning new customs
and code. The final utility for contributing agents is defined
in Equation (5):

Uc = α ·Mi + (1− α) · Si − sc (5)

If an agent makes a decision to consume or produce, it
calculates the expected utility of all available projects and
chooses the project with the highest utility. When a project is
not updated (no agent contributes to it) for a number of time
steps (using a default of 5 time steps), it is considered a dead
or inactive project and is removed from the system. Agents
who produce can start a new project with a probability ps · pc,
where ps is a model-level constant controlling the probability
of creating a new project. Thus agents who have a higher
tendency pc to contribute to projects are also more eager to
start new projects. In the default case ps is equal to 0.01.

Agents only contribute to a project when they expect this
will lead to a utility greater than or equal to a minimum utility
Umin. Agents stay with a project they last worked on if they
choose to participate and there is no better alternative. In the
default case Umin is equal to 0.2.

Agents who contribute to a project will affect the charac-
teristics of the project np. The new value of np at time t
(np,t) is adjusted by the average values of the preferences
of the contributing agents’ na values and the previous value
of np (np,t−1). The adjustment rate between a project’s old
characteristics np,t−1 and the contributing agents’ preferences
na is determined by λ, which is equal to 0.85 in the default
case, as shown in Equation (6):

np,t = λ · np,t−1 +
1− λ

totcont
·

totcont∑

i=1

na,i (6)

where totcont is the current number of agents contributing to
a project and na,i is the preference of the ith agent contributing
to the project.

Agents may not reconsume the same project within a
certain time span, modeling the assumption that consuming
an unchanged or minorly changed project will not be worth
the effort (e.g., there is effort involved in downloading and
installing software or reading a Wikipedia article). The time
span limiting reconsumption is set to 10 for the model runs
considered.

The model is implemented in NetLogo; multiple runs were
executed in parallel on a high performance computing system.

4. MODEL ANALYSIS

To study the model, two input parameters are varied and
several resulting distributions analyzed. The input variables
considered are the definition of success and the switching cost.
The five possible success metrics were outlined as S1–S5 in
Section 3. The switching cost, sc, is a penalty subtracted from
the utility of projects the agent did not work on during the
last time step the agent contributed to a project, as described
in Equation (5). This represents the extra effort an agent

Radtke& Janssen: Consumption and Production of Digital Public Goods 79

Fig. 2. Fraction of projects as a function of cumulative resources. The upper figure is for switching cost equal to zero and the lower figure is for switching
cost equal to 0.1.

must expend to familiarize itself with a new project before it
can provide meaningful contributions. Values considered for
switching costs are 0.0, 0.1, 0.2, and 0.4. (Note that utility
values range between 0.0 and 1.0 so a penalty of 0.4 is
significant.)

The model was run for 1000 time steps, thought to be
sufficient to allow conditions to stabilize, and populated with
5000 agents. Each parameter combination was run 10 times
and the results averaged to account for the stochastic nature
of the model.

4.1. Cumulative Resources, Consumer, and Producer Distri-
butions

The following distributions were considered after the 1000th

time step:
• cumulative resources (i.e., amount of work) a project has

accumulated
• number of consumers using a project
• number of producers contributing to a project
All results were normalized for comparison of the distri-

butions. The results for switching costs 0.0 and 0.1, and for
the five different success formulations for the three different
output data are depicted in Figures 2–4.

The all projects equal success metric is an outlier when
the switching cost is 0.0. This is for the following reason:
by causing all projects’ success to be equal, the S term in

the utility calculation Uc becomes the same for all projects,
causing utility (and thus selection) to be based entirely on
an agent’s and project’s matching interests Mi. Essentially,
treating all projects as equal successes is the equivalent to
selecting a random project for S, the opposite end of the
spectrum of using best choice. When paired with a switching
cost of 0.0, there is a lack of stability in agents working long-
term on certain projects. Instead, agents rapidly flit from one
project to another, especially as new projects are created that
better match their interests. This results in an explosion in
the population of projects, since projects rarely exist for 5
time steps without being worked on by an agent and thus are
rarely removed from the simulation. As a result, data from
this success metric are not included in the figures when the
switching cost is 0.0. For non-zero switching costs the all
projects equal success metric is used as a baseline to show
that agents discriminating among projects using other success
metrics does have effect on the resulting distributions.

With a switching cost of 0.0, the cumulative resources distri-
bution is similar for three out of four of the success metrics,
with the current number of consumers being the exception,
as shown in Figure 2. Essentially, most projects accumulate
zero or almost no resources. For all success metrics, as the
switching cost increases, the cumulative resources morphs
towards a bimodal distribution. Projects are either small or
large, and the higher the switching cost the greater the number

80 INTERNATIONAL JOURNAL OF INTELLIGENT CONTROL AND SYSTEMS, VOL. 14, NO. 1, MARCH 2009

Fig. 3. Fraction of projects as a function of the number of consumers. The upper figure is for switching cost equal to zero and the lower figure is for
switching cost equal to 0.1.

of large projects. A non-zero switching cost essentially creates
a “stickiness” factor; agents tend to continue, or stick, with the
project they were last involved in simply because the penalty
of switching to a different project overwhelms the utility of
doing so. Thus projects tend to be small, by never attracting
agents, or large, by having agents stick with them for extended
periods and thus accumulating a substantial amount of work.
This is similar to data observed on SourceForge, where most
projects never get off the ground, but a few accumulate enough
code to become useful software. Note that with a switching
cost of 0.1, two groupings emerge: the cumulative number of
consumptions, current number of producers, and cumulative
work distributions change little with the increased switching
cost, while current number of consumers becomes more of an
outlier. In fact the current number of consumers distribution
is very similar to the all projects equal distribution, indicating
this metric is not very discriminating. This is because con-
sumers are restricted from reconsuming the same project twice
within 10 time steps. Thus, consuming agents are constantly
moving through a subset of favored projects, which causes
this metric to perform more like a random selection. Note
that producers behave at the other extreme: as the switching
cost increases, a producing agent is more and more likely to
contribute to the same project in the subsequent time step.

In general, most projects have very few consumers and
few projects have many consumers, with a semi-smooth trend

connecting the two extremes as shown in Figure 3. Once again,
the current number of consumers distribution is an outlier
when the switching cost is 0.0. All other success metrics,
regardless of the switching cost, seem to result in similar
distributions, including the baseline of all projects equal.
This is expected since, unlike contributing agents, consuming
agents do not consider a project’s success when calculating
its utility Uu. Also unlike contributing agents, consuming
agents do not include a switching cost in their utility function;
therefore, large differences are not expected among the success
metrics or by varying the switching cost. Indeed, the minor
variations seen must be side effects of other components of
the model, such as where producers are contributing.

The number of producers distributions are shown in Figure
4. As was seen in the cumulative resources distributions,
once again the current number of consumers metric is less
similar to the other success metrics and more similar to the
baseline of all projects equal. This supports the notion that
the current number of consumers metric is non-discriminating.
As the switching cost increases, more producers are associated
with projects. This is similar to the results of the cumulative
resources distribution and again can be explained by the
increased stickiness factor. As the switching cost increases,
ignored projects are removed, but those that do attract the
attention of producers tend to keep those producers and gain
additional producers, which also stay with the project long-

Radtke& Janssen: Consumption and Production of Digital Public Goods 81

Fig. 4. Fraction of projects as a function of the number of producers. The upper figure is for switching cost equal to zero and the lower figure is for switching
costs equal to 0.1.

term, over time. Note the highly skewed distribution from the
model mimics data from studies of SourceForge. Averaged
over all success metrics and with a switching cost of 0.1, 73%
of the model’s projects have zero or one developers and 85%
have fewer than four developers, as compared to 67% and 90%
respectively for SourceForge data [6].

At this level, the evaluated success metrics show only minor
variations for the observed distributions. The one exception is
the current number of consumers metric, which tracks closely
with the baseline all projects equal, meaning it is similar to
random choice. Since the success metrics only impact the
producers, it is not surprising that more variation is seen when
looking at cumulative resources and the number of producers
distributions. Finally, switching cost also has an effect on the
model, with projects having more producers and accumulating
more resources when switching costs are high.

4.2. Projects’ Needs Vector Distributions

Part of the goal of this research is to better understand what
types of projects are successful. Recall that new projects are
continually added during a simulation run while projects that
do not receive contributions for 5 time steps are removed.
Thus, at any given time the population of projects consist
of active projects, as inactive projects are continually being
eliminated. By examining the projects’ needs vector distri-
bution, an understanding can be gained about what types of

projects survive and are therefore arguably successful. Figure
5 shows the distribution of projects’ needs vectors for each
of the 5 success metrics. There is not significant variation
with different switching costs and therefore only the switching
cost of 0.1 is shown. Note that the peaks of the distributions
are slightly off center. Recall that needs vectors less than 0.5
are biased towards consumers and greater than 0.5 towards
producers. The distributions are skewed to the right, with
peaks occurring in the range [0.5, 0.6), supporting the notion
that surviving projects tend to be biased to producer needs.
This is in alignment with literature that argues open source
development is a producer-driven process (e.g., [14], [20],
[21]).

Finally, some additional values of surviving projects are
examined. Figure 6 contains scatterplots of project needs
vectors versus cumulative resources. Each plot contains the
results for 10 runs of the model with a switching cost of 0.1.
There are separate plots for each of the non-baseline success
metrics. Consumer-oriented success metrics cause projects to
accumulate a wide range of resources over a wide range of
needs vectors, as shown in Figures 6(a) and 6(b). On the other
hand, only a very narrow range of needs vectors accumulate
resources for producer-oriented success metrics, as shown in
Figures 6(c) and 6(d). The behavior of the producer-oriented
metrics is closer to that observed at SourceForge, where only
a small percentage of projects develop beyond a few lines

82 INTERNATIONAL JOURNAL OF INTELLIGENT CONTROL AND SYSTEMS, VOL. 14, NO. 1, MARCH 2009

Fig. 5. Fraction of surviving projects as a function of projects’ needs vectors. Values less than 0.5 indicate a consumer bias and greater than 0.5 indicate a
producer bias.

(a) Current number of consumers success metric (b) Cumulative number of consumers success
metric

(c) Current number of producers success metric (d) Cumulative work success metric

Fig. 6. Project needs vectors versus cumulative resources. (a) and (b) are consumer-oriented metrics and (c) and (d) are producer-oriented metrics.

of code. Notice that for all success metrics the maximum
resources accumulate for projects with needs vectors around
0.6, or those projects slightly biased towards producers.

Figure 7 shows scatterplots of project needs vectors versus
cumulative consumptions. Notice that the peak consumptions
occur at project needs vectors less than 0.5, showing a con-
sumer bias. This is logical, as consumers, and not producers,
affect the number of times a project is downloaded. Consumer-
oriented metrics result in more consumed projects with low
needs vectors. To understand why, recall that only producers
affect which projects survive. When calculating the utility Uc

of a project, producers consider two factors: the matching in-
terests Mi and the success S. The matching interests is always
biased towards producer-oriented projects. Thus when using
producer-oriented success metrics, producing agents mostly
select projects with needs vectors greater than 0.5. On the other
hand, using consumer-oriented success metrics causes the
second term in the utility function to favor consumer-oriented
projects and thus more projects with needs vectors less than 0.5
survive. Consumers then select projects for download based
solely on matching interests and thus will gravitate towards
consumer-oriented projects if any exist. The reason the peak

Radtke& Janssen: Consumption and Production of Digital Public Goods 83

(a) Current number of consumers success metric (b) Cumulative number of consumers success
metric

(c) Current number of producers success metric (d) Cumulative work success metric

Fig. 7. Project needs vectors versus cumulative consumptions. (a) and (b) are consumer-oriented metrics and (c) and (d) are producer-oriented metrics.

consumptions are not more off center is because most agents
have only a slight consumer or producer bias, as a result of
how pc and pu are initially assigned and mapped to agent
needs vectors. Thus consumer-oriented projects with very low
needs vectors do not receive as many downloads as values
just slightly less than 0.5 simply because there are more agents
with mid-value needs vectors. A sample distribution of agents’
needs vectors is shown in Figure 8.

Fig. 8. Histogram of agents’ needs vectors. Most agents have only a slight
consumer (< 0.5) or producer (> 0.5) bias.

Figure 9 shows scatterplots of project needs vectors versus
success. With consumer-oriented metrics, success values, even
for the best projects, are low, and the project needs vector

for the most successful projects is ill-defined. The producer-
oriented metrics are just the opposite. All successful projects
cluster tightly around a needs vector value of 0.59, again
indicating a producer bias. As mentioned earlier, this value
is not more extreme because the majority of agents have
needs vectors near the center. The fact that all projects have
extremely high success values shows the tendency of one
project to dominate over all others. Essentially, it is almost
impossible for a new project to become successful once there
is an established successful project. This is partially due to
agents always selecting the best project and is akin to the no-
tion that popularity begets popularity. This explains why there
are more non-zero values in Figures 6, 7, and 9 when using
consumer-oriented metrics. Consumer-oriented metrics cause a
diversity in the population of surviving projects through a lack
of feedback loop: producers are attracted to projects popular
with consumers, while consumers are attracted to projects that
match their interests. When using producer-oriented metrics,
producers flock to projects that are popular with producers,
which in turns makes those projects even more attractive to
other producers. The positive feedback loop means only a
small number of projects survive, and once a successful project
is established, it becomes almost impossible for new projects
to gain developers and thus increase their success.

In summary, some differences are observed in surviving
projects needs vectors when using different success metrics.
For example, there is more variability and a larger number
of non-zero values for cumulative resources, cumulative con-

84 INTERNATIONAL JOURNAL OF INTELLIGENT CONTROL AND SYSTEMS, VOL. 14, NO. 1, MARCH 2009

(a) Current number of consumers success metric (b) Cumulative number of consumers success
metric

(c) Current number of producers success metric (d) Cumulative work success metric

Fig. 9. Project needs vectors versus success. (a) and (b) are consumer-oriented metrics and (c) and (d) are producer-oriented metrics.

sumptions, and success when using consumer-oriented metrics.
There is also some minor variation in peak values, although all
metrics for cumulative resources and success show a producer
bias while all metrics for cumulative consumptions show a
consumer bias. Thus, when choosing a success metric, the
exact success metric may be less important than whether it
belongs to a consumer or producer category. Within one of
these two categories, the differences are minor.

5. CONCLUSION

Digital public goods, such as open source software, are pro-
duced by volunteers who contribute content for free. Empirical
analysis shows that digital public goods experience unequal
distributions of various attributes, such as the number of down-
loads/views of a project or the number of developers associated
with a project. What causes these skewed distributions? Survey
research shows that one of the hypotheses is that users are
attracted to successful projects. However, there is no generally
agreed upon definition of a successful project.

We create a simple public goods model to study the impacts
of using different success metrics. Our analysis with different
definitions of success shows that using different forms of
measuring success has an impact on the model’s output.
Success may be viewed differently by consumers versus
producers. We therefore categorize our success metrics into
consumer-oriented and producer-oriented groups. In general,
we find differences between these two groups. Consumer-
oriented metrics result in larger and more diverse popula-

tions of projects. Within the consumer-oriented category, we
find more variation, including some cases where the current
number of consumers metric behaves like random selection.
The variability for producer-oriented metrics is much smaller.
Finally, we demonstrate that our model is producer-driven
and argue that the data generated by the model when using
producer-oriented success metrics has characteristics that more
closely match real world data, supporting the notion that public
goods are driven by the interests of producers, not consumers.

REFERENCES

[1] S. C. Smith and A. Sidorova, “Survival of open-source projects: A pop-
ulation ecology perspective,” in ICIS 2003. Proceedings of International
Conference on Information Systems 2003, Seattle, WA, 2003.

[2] D. Anthony, S. W. Smith, and T. Williamson, “Explaining quality in
Internet collective goods: Zealots and good samaritans in the case of
Wikipedia,” Online, November 2005, retrieved November 24, 2008 from
http://web.mit.edu/iandeseminar/Papers/Fall2005/anthony.pdf.

[3] J. O. Ledyard, “Public goods: A survey of experimental research,” in
The Handbook of Experimental Economics, J. H. Kagel and A. E. Roth,
Eds. Princeton, New Jersey, USA: Princeton University Press, 1995,
pp. 111–194.

[4] R. M. Isaac, J. M. Walker, and A. W. Williams, “Group size
and the voluntary provision of public goods: Experimental evidence
utilizing large groups,” Journal of Public Economics, vol. 54, no. 1,
pp. 1–36, May 1994. [Online]. Available: http://ideas.repec.org/a/eee/
pubeco/v54y1994i1p1-36.html

[5] N. P. Radtke, M. A. Janssen, and J. S. Collofello, “What makes
Free/Libre Open Source Software (FLOSS) projects successful? An
agent-based model of FLOSS projects,” International Journal of Open
Source Software and Processes, in press.

Radtke& Janssen: Consumption and Production of Digital Public Goods 85

[6] D. Weiss, “Quantitative analysis of open source projects on Source-
Forge,” in Proceedings of The First International Conference on Open
Source Systems (OSS 2005), M. Scotto and G. Succi, Eds., Genova, Italy,
2005, pp. 140–147.

[7] M. A. Rossi, “Decoding the “Free/Open Source(F/OSS) Software puz-
zle” a survey of theoretical and empirical contributions,” Dipartimento
di Economia Politica, Università degli Studi di Siena, Quaderni 424,
Apr. 2004.

[8] S. Krishnamurthy, “Cave or community?: An empirical examination of
100 mature open source projects,” First Monday, vol. 7, no. 6, June
2002. [Online]. Available: http://www.firstmonday.org/issues/issue7\ 6/
krishnamurthy/index.html

[9] R. A. Ghosh, B. Krieger, R. Glott, and G. Robles, “Part 4: Survey of
developers,” in Free/Libre and Open Source Software: Survey and Study.
Maastricht, The Netherlands: University of Maastricht, The Netherlands,
June 2002.

[10] K. R. Lakhani, B. Wolf, J. Bates, and C. DiBona, “The Boston Con-
sulting Group hacker survey,” Online, 2002, http://www.osdn.com/bcg/.

[11] F. Ortega, J. M. Gonzalez-Barahona, and G. Robles, “On the inequality
of contributions to Wikipedia,” in HICSS ’08: Proceedings of the 41st
Annual Hawaii International Conference on System Sciences (HICSS
2008). Washington, DC, USA: IEEE Computer Society, 2008, pp. 304–
310. [Online]. Available: http://dx.doi.org/10.1109/HICSS.2008.333

[12] J. Voss, “Measuring Wikipedia,” in Proceedings of the 10th Interna-
tional Conference of the International Society for Scientometrics and
Informetrics. ISSI, July 2005, pp. 221–231.

[13] K. Crowston, J. Howison, and H. Annabi, “Information systems success
in free and open source software development: Theory and measures,”
Software Process: Improvement and Practice, vol. 11, no. 2, pp. 123–
148, March/April 2006.

[14] K. Crowston and B. Scozzi, “Open source software projects as virtual
organizations: Competency rallying for software development,” in IEE
Proceedings Software, vol. 149, no. 1, 2002, pp. 3–17.

[15] Y. Wang, “Prediction of success in open source software development,”
Master of science dissertation, University of California, Davis, Davis,
CA, Spring 2007.

[16] R. English and C. M. Schweik, “Identifying success and tragedy
of FLOSS commons: A preliminary classification of SourceForge.net
projects,” in FLOSS ’07: Proceedings of the First International Work-
shop on Emerging Trends in FLOSS Research and Development. Wash-
ington, DC, USA: IEEE Computer Society, 2007, p. 11.

[17] A. Lih, “Wikipedia as participatory journalism: Reliable sources?
Metrics for evaluating collaborative media as a news resource,” in
Proceedings of the 5th International Symposium on Online Journalism,
Austin, TX, USA, 2004. [Online]. Available: http://staff.washington.
edu/clifford/teaching/readingfiles/utaustin-2004-wikipedia-rc2.pdf

[18] J. Giles, “Internet encyclopaedias go head to head,” Nature, vol.
438, no. 7070, pp. 900–901, December 2005. [Online]. Available:
http://dx.doi.org/10.1038/438900a

[19] T. Chesney, “An empirical examination of Wikipedia’s credibility,” First
Monday, vol. 11, no. 11, 2006.

[20] E. S. Raymond, “The cathedral and the bazaar,” Thyrsus Enterprises,
Tech. Rep. 3.0, September 11 2000.

[21] J. Lerner and J. Tirole, “The scope of open source licensing,” Journal
of Law, Economics, and Organization, vol. 21, no. 1, pp. 20–56, April
2005. [Online]. Available: http://dx.doi.org/10.1093/jleo/ewi002

Nicholas P. Radtke is a Ph.D. candidate and teaching assistant in Computer
Science at Arizona State University. His research focuses on understanding
and modeling the Free/Libre Open Source Software engineering processes.

Marco A. Janssen is an Assistant Professor on formal modeling of social and
social-ecological systems within the School of Human Evolution and Social
Change at Arizona State University. He is also the Associate Director of the
Center for the Study of Institutional Diversity. His formal training is within the
area of Operations Research and Applied Mathematics. His current research
focuses on the fit between behavioral, institutional and ecological processes. In
his research he combines agent-based models with laboratory experiments and
case study analysis. Janssen also performs research on diffusion processes of
knowledge and information, with applications in marketing and digital media.

86 INTERNATIONAL JOURNAL OF INTELLIGENT CONTROL AND SYSTEMS, VOL. 14, NO. 1, MARCH 2009

