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A Regulator Design for Nonlinear HIV-1 Infection
System

Fatma A. ALAZABI, Mohamed A. ZOHDY and Abdulhakim A. EZZABI

Abstract—In this paper a technique to control virus concentra-
tion for HIV-1 infection model obtained from actual patients data
is introduced. The strategy is based on Linear quadratic regulator
(LQR) and applied for each patient. Feedback linearization is also
presented and preferred over other methods like the Taylor series,
due to the fact that approximation around an operating point
may not perform satisfactorily. The proposed controller has the
ability to control the dynamic behavior of the virus concentration
for different patients with the same control design. In addition,
controller performance of both short and long term periods for
each patient is evaluated.

Index Terms—HIV-1 nonlinear model, Feedback linearization,
Linear quadratic regulator (LQR), Nonlinear control.

I. INTRODUCTION

I
N the past years, many studies have sought to understand
the basic characteristics of an HIV-1 dynamic infection

model. Human immunodeficien y virus (HIV) infection can
be characterized by three different stages, namely the acute
infection, chronic infection, and acquired immunodeficien y
syndrome (AIDS) [1]. During acute HIV infection, the viral
load increases sharply in the firs few weeks, and then declines,
ultimately reaching a quasi-steady state [2]–[5]. Decreasing the
viral load from the peak is caused by immune cells response
and/or limited target cell availability [6]. The viral steady state
has been shown to predict the progress of further disease
development [7]. The higher the viral steady state, the more
quickly disease progresses to AIDS. Currently, there are four
types of antiretroviral (ARV) drugs used in the treatment
of HIV-1- patients. These include nucleoside/nucleotide re-
verse transcriptase inhibitors (NRTIs), non-nucleoside reverse
transcriptase inhibitors (NNRTIs), protease inhibitors (PIs),
and entry/fusion inhibitors (EIs). Each type of drug targets
different stages of the viral lifecycle [8]. Antiretroviral therapy
(ART) has used a combination of three or more drugs from
two or more types. For example, a combination of two NRTIs
with either a PI or NNRTI has proved to be extremely efficien
in suppressing the plasma viral loads of most HIV-1-infected
patients below the limit of viral detection (50 RNA copies
ml−1) by standard assay [9]. However, drug treatment often
fails to achieve complete viral suppression to below the limit
of detection because of many host and viral factors. For
example, nonadherence to the dosing requirements, deleterious
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side effects, poor drug absorption and the emergence of a drug-
resistant virus [10]. Therefore, controlling HIV infection has
been an interesting problem for many researchers [11]–[18]. In
this study, a transformed nonlinear HIV-1 model based on full
state feedback control design for different patients is presented.
The controller is then designed using the LQR technique to
suppress the virus load to an undetectable level. Furthermore,
HIV-1 virus concentration for different infected patients with
LQR controller design is investigated in both short and long
term periods.

II. HIV-1 MODEL SYSTEM DEFINITION

In this paper, we use a nonlinear HIV-1 model in [14] with
control inputs introduced multiplicatively into the system. The
corresponding control system can be represented as:

ẋ1 = f1 (·) = λ− dx1 − kx1x3 + kx1x3u1
ẋ2 = f2 (·) = kx1x3 − δx2 − kx1x3u1
ẋ3 = f3 (·) = πx2 − cx3 − πx2u2

(1)

This model has three states that represent the primary dynamic
of HIV-1 infection where x1 denotes activated CD4+T cells,
x2 is productively infected CD4+ T cells and x3 is the virus
concentration. The parameter λ represents recruitment rate
of activated CD4+T cells, d is the death rate of activated
CD4+T cells, k is the rate of infection, δ is the death rate
of CD4+T infected cells, π is the rate of virus production by
infected cells, c is the clearance rate of the virus, u1 is T cells
drug modulation and u2 is virus drug modulation.

The estimated parameter values for different patients used
in this study are shown in Table 1 [19].

The system in (1) can be transformed using the feedback
linearization approach that will be discussed in more detail in
the next section.

III. FEEDBACK LINEARIZATION APPROACH

In this section, we develop a feedback linearized HIV-
1 model. The feedback linearization has been described in
the nonlinear control literature [20]–[22]. The idea is to
algebraically transform a nonlinear system into an equivalent
model of a linear form, and to cancel existing nonlinearities,
such that linear control techniques can be applied.

Consider a square (same number of inputs and outputs) non-
linear system described by the following nonlinear differential
equations:
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TABLE I
PARAMETER VALUES FOR DIFFERENT PATIENTS

Patient λ d k δ π

cells ml day−1 day−1 ml viron day−1 day−1 viron day−1

3 65 0.0065 6.4 ∗ 10−7 0.43 960

5 170 0.017 6.3 ∗ 10−7 0.39 870

6 120 0.012 7.5 ∗ 10−7 0.39 790

8 85 0.0085 6.6 ∗ 10−7 0.17 830

ẋ = f(x) +G(x)u = f(x) +
l∑

j=1

g(x)juj (2)

y = h(x) (3)

where x ∈ D ⊂ Rn is a state vector, u ∈ Rl is a control input,
y is an output of interest, and f : D ⊂ Rn → Rn, G ∈ Rn×l,
and h : D ⊂ Rn → Rm are nonlinear functions of states in a
smooth vector field respectively. Therefore, the system output
can be differentiated until control inputs reappear.

yρmm = Lρmf hm +

l∑
j=1

LgjL
ρm−1
f hmuj (4)

where lie derivatives are define as:

Lρmf hm = Lfhm(L
ρm−1
f hm) =

∂(Lρm−1f hm)

∂x
f(x)

=
[

∂(Lρm−1
f hm)

∂x1
...

∂(Lρm−1
f hm)

∂xn

] f1
:
fn

 (5)

Similarly:

LgL
ρm−1
f hm =

∂(Lρm−1f hm)

∂x
g(x)

=

[
∂(Lρm−1f hm)

∂x1
...
∂(Lρm−1f hm)

∂xn

] g
1

:
gn


(6)

Hence, the equation (4) can be rewritten in a matrix form
as

yρ11
yρ22
:

yρmm

 =


Lρ1f h1
Lρ2f h2
:

Lρmf hm

+


Lg1L
ρ1−1
f h1 Lg2L

ρ1−1
f h1 ... LglL

ρ1−1
f h1

Lg1L
ρ2−1
f h2 Lg2L

ρ2−1
f h2 ... LglL

ρ2−1
f h2

: : ... :

Lg1L
ρm−1
f hm Lg2L

ρm−1
f hm ... LglL

ρm−1
f hm



u1
u2
:
u
l


(7)

yρ11
yρ22
:

yρmm

 ,


v1
v2
:
vm

 (8)

According to nonlinear system theory, the number of deriv-
atives needed to take from the output to get the control input
is called the relative degree “ρ” of the system. Furthermore, if
the total relative degree of the system is equal to the system
degree itself, then the system can be fully feedback linearized.
On the other hand, the system is partially feedback linearized
when the system degree itself is greater than the relative degree
of the system.

From (2) and (3), we can defin the HIV-1 system as:

f(x) =

 λ− dx1 − kx1x3
kx1x3 − δx2
πx2 − cx3

 , G(x) =
 kx1x3 0
−kx1x3 0
0 −πx2


h(x) =

[
x2
x3

]

Having taken the firs derivative from the output, we gain:

ẏ =
∂h

∂x
ẋ =

[
ẏ1
ẏ2

]
ẏ =

[
kx1x3 − δx2 − kx1x3u1
πx2 − cx3 − πx2u2

]
=

[
v1
v2

]
(9)

In the above firs derivative equation, the inputs appear
and the relative degree of the system is two. Therefore,
the total dynamics of the system can be divided into an
external controlled part (i.e.ξ) and an internal unobserved
uncontrolled part (i.e.η). Thus designing a controller for an
external dynamic system is only applicable when the internal
dynamic is stable, as shown below:

u =
1

LgL
ρ−1
f h(x)

[−Lρfh(x)+v] = D−1(x)[−b(x)+v] (10)

Therefore, the coordinate transformation Z = T (x) has
been obtained in the following form as:
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Z = T (x) =

[
T1(x)
T2(x)

]
=



y
ẏ
:

yρ−1

...
η
1

:
η(n−ρ)



=



h(x)
L1fh(x)

:

Lρ−1f h(x)

...
φ1(x)
:

φ(n−ρ)(x)


=



ξ1
ξ2
:
ξρ
...
η
1

:
η(n−ρ)


(11)

where the components η1, . . . , η(n−ρ) of η(x) are chosen such
that T (x) is a diffeomorphism in a domain D0 ⊂ D and:

∂φi(x)

∂x
G(x) = 0 (12)

where i = 1, 2, . . . , n− ρ, ∀ x ∈ D0. Then, we have :

Z = T (x) =

[
T1(x)
T2(x)

]
=


y1
y2
...
φ(x)

 (13)

To determine the normal form, equation (12) is applied as:

[
kx1x3

∂φ(x)
∂x1

− kx1x3 ∂φ(x)∂x2
−πx2 ∂φ(x)∂x3

]
= 0 (14)

By using the separation of variables method, it yields:

φ(x) =W (x1 + x2) (15)

where W is a positive integer number, and φ(x) is nonunique.
After applying the coordinate transformation Z, it is possi-

ble to transform the nonlinear system to the following linear
system:

 ξ̇1
ξ̇2
η·

 =
 0 0 0

0 0 0
d− δ 0 −d

 ξ1
ξ2
η

 (16)

+

 1 0
0 1
0 0

[ v1
v2

]
+

 0
0
λ



Fig. 1 shows block diagram for the HIV-1 control system
with feedback linearization and LQR.

Fig. 1. HIV-1 control system with feedback linearization and LQR.

IV. CONTROL DESIGN BASED ON LQR
LQR is an optimal control scheme that gives best response

with respect to some given measure of performance. The
performance measure is a quadratic function composed of the
state vector and control input. In this method, a feedback
gain matrix is designed such that the performance measure
is minimized. The performance measure is selected to achieve
some compromise between the use of the control effort, the
magnitude, and the speed of response that will guarantee
system stability [23].

Consider an HIV-1 continuos linearized system for infected
patients described in (16). In the LQR approach design prob-
lem, our goal is to construct a stabilizing linear state feedback
controller of the form [24]:

v = −kZ = −kT (x) (17)

where k is a constant control gain matrix.

u = D−1(x)[−b(x) + v] (18)

The performance measure is define as:

J =

∫ ∞
0

[
xT (t)Qx(t) + uT (t)Ru(t)

]
dt (19)

where Q is a symmetric positive semidefinit weighting ma-
trix. R is a symmetric positive definit weighting matrix. The
crucial task in designing an LQR is the selection of suitable
weighting matrices for its performance measure such that the
system’s natural response is optimized.

The optimal control law, which minimizes J, has the form:

uop(t) = −R−1BTP x(t) (20)

where P is the symmetric positive definit solution of the
Algebraic Riccati Equation (ARE):

ATP + PA− PBR−1BTP +Q = 0 (21)

In this design, the weighting matrices are chosen:

R =

[
1 0
0 0.00001

]
, Q =

 q11 0 0
0 q22 0
0 0 q33

 ≥ 0 (22)

such that we want to drive x3(t) to zero. The rate x3(t)→ 0
can be controlled by varying the numerical value of q. Here
(q11, q22, q33) are chosen as diag (1, 100, 1).
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V. SIMULATION AND RESULTS

The dynamics of HIV-1 virus concentration and transformed
nonlinear HIV-1 model with LQR controller for different
patients are simulated and presented in this section. The
response of HIV-1 virus for different infected patients without
external control is shown in Fig. 2.
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Fig. 2. HIV-1 virus concentration for different infected patients
without external control.

For the different HIV-1 infected patients, a stabilizing linear
state feedback controller is expressed in x-domain using (17)
and (18) as:

u = D−1(x)[−b(x)− kT (x)] (23)

where:

D(x) =

[
−kx1x3
−πx2

]
, b(x) =

[
kx1x3 − δx2
πx2 − cx3

]
, T (x) =

 x2
x3
φ(x)



By substituting (23) into (2) yields the closed loop nonlinear
HIV-1 control system as:

ẋ =

 λ− dx1 − kx1x3
kx1x3 − δx2
πx2 − cx3

+
 kx1x3 0
−kx1x3 0
0 −πx2

 D−1(x)[−b(x)+v]

(24)

Thus, we have

ẋ =

 λ− dx1 − kx1x3
kx1x3 − δx2
πx2 − cx3

+
 kx1x3 0
−kx1x3 0
0 −πx2

[ −kx1x3
−πx2

]−1
[−
[
kx1x3 − δx2
πx2 − cx3

]
(25)

− k

 x2
x3
φ(x)



The simulated results in Fig. 3 and 4 show the control of the
HIV-1 virus concentration for different infected patients with
a controller that is designed using the LQR technique for short
and long periods. It is assumed that the initial conditions when
applying the control for infected patients is the steady states for
each patient without control. The computational complexity of
the controller design arises when HIV-1 system can only be
partially feedback linearized. Therefore, the total dynamics of
the system can be decomposed into an external controlled part
(i.e.ξ) and an internal unobserved uncontrolled part (i.e.η).
Also, findin the state transformation Z and construct function
φ1(x), φ2(x), ..., φn−ρ(x) satisfying ∂φi(x)

∂x G(x) = 0 are
being more difficul and complicated as described in section
III .
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Fig. 3. HIV-1 virus concentration for different infected patients
with LQR controller design for short term period.

0 100 200 300 400 500
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Time (Days)

Lo
g1

0 
R

N
A 

co
pi

es
 / m

l

Patient # 3 using LQR

0 100 200 300 400 500
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Time (Days)

Lo
g1

0 R
N

A
 c

op
ie

s /
 m

l

Patient # 5 using LQR

0 100 200 300 400 500
1.5

2

2.5

3

3.5

4

4.5

5

5.5

Time (Days)

L
og

10
 R

NA
 co

p
ie

s 
/ m

l

Patient # 6 using LQR

0 100 200 300 400 500
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Time (Days)

L
og

10
 R

NA
 co

p
ie

s 
/ m

l

Patient # 8 using LQR

Fig. 4. HIV-1 virus concentration for different infected patients
with LQR controller design for long term period.
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VI. CONCLUSIONS AND FUTURE WORK

In this study, the performance of an HIV-1 dynamic model
for several patients based on full state feedback control design
and real data is examined. A control strategy based on LQR is
designed and evaluated for both short and long term periods.
Feedback linearization is presented and preferred over other
methods like the Taylor series because approximation around
an operating point may not perform well. The results illustrate
that the LQR technique based on feedback linearizing nonlin-
ear HIV-1 model is effective in reducing virus concentration
for each patient. Furthermore, the simulations show that LQR
is a robust approach and can provide efficien results. How-
ever, the LQR may become hard to implement through drug
regime.

In future work, the approach used in this study will be
extended to more complex HIV-1 models like two strains HIV-
1 model and time delay HIV-1 model.
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